Numworks Epsilon  1.4.1
Graphing Calculator Operating System
b_tgamma.c
Go to the documentation of this file.
1 /* $OpenBSD: b_tgamma.c,v 1.3 2009/10/27 23:59:29 deraadt Exp $ */
2 /*-
3  * Copyright (c) 1992, 1993
4  * The Regents of the University of California. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  * notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  * notice, this list of conditions and the following disclaimer in the
13  * documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  * may be used to endorse or promote products derived from this software
16  * without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * This code by P. McIlroy, Oct 1992;
33  *
34  * The financial support of UUNET Communications Services is greatfully
35  * acknowledged.
36  */
37 
38 #include "math.h"
39 #include "math_private.h"
40 
41 /* METHOD:
42  * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
43  * At negative integers, return NaN and raise invalid.
44  *
45  * x < 6.5:
46  * Use argument reduction G(x+1) = xG(x) to reach the
47  * range [1.066124,2.066124]. Use a rational
48  * approximation centered at the minimum (x0+1) to
49  * ensure monotonicity.
50  *
51  * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
52  * adjusted for equal-ripples:
53  *
54  * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
55  *
56  * Keep extra precision in multiplying (x-.5)(log(x)-1), to
57  * avoid premature round-off.
58  *
59  * Special values:
60  * -Inf: return NaN and raise invalid;
61  * negative integer: return NaN and raise invalid;
62  * other x ~< -177.79: return +-0 and raise underflow;
63  * +-0: return +-Inf and raise divide-by-zero;
64  * finite x ~> 171.63: return +Inf and raise overflow;
65  * +Inf: return +Inf;
66  * NaN: return NaN.
67  *
68  * Accuracy: tgamma(x) is accurate to within
69  * x > 0: error provably < 0.9ulp.
70  * Maximum observed in 1,000,000 trials was .87ulp.
71  * x < 0:
72  * Maximum observed error < 4ulp in 1,000,000 trials.
73  */
74 
75 static double neg_gam(double);
76 static double small_gam(double);
77 static double smaller_gam(double);
78 static struct Double large_gam(double);
79 static struct Double ratfun_gam(double, double);
80 
81 /*
82  * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
83  * [1.066.., 2.066..] accurate to 4.25e-19.
84  */
85 #define LEFT -.3955078125 /* left boundary for rat. approx */
86 #define x0 .461632144968362356785 /* xmin - 1 */
87 
88 #define a0_hi 0.88560319441088874992
89 #define a0_lo -.00000000000000004996427036469019695
90 #define P0 6.21389571821820863029017800727e-01
91 #define P1 2.65757198651533466104979197553e-01
92 #define P2 5.53859446429917461063308081748e-03
93 #define P3 1.38456698304096573887145282811e-03
94 #define P4 2.40659950032711365819348969808e-03
95 #define Q0 1.45019531250000000000000000000e+00
96 #define Q1 1.06258521948016171343454061571e+00
97 #define Q2 -2.07474561943859936441469926649e-01
98 #define Q3 -1.46734131782005422506287573015e-01
99 #define Q4 3.07878176156175520361557573779e-02
100 #define Q5 5.12449347980666221336054633184e-03
101 #define Q6 -1.76012741431666995019222898833e-03
102 #define Q7 9.35021023573788935372153030556e-05
103 #define Q8 6.13275507472443958924745652239e-06
104 /*
105  * Constants for large x approximation (x in [6, Inf])
106  * (Accurate to 2.8*10^-19 absolute)
107  */
108 #define lns2pi_hi 0.418945312500000
109 #define lns2pi_lo -.000006779295327258219670263595
110 #define Pa0 8.33333333333333148296162562474e-02
111 #define Pa1 -2.77777777774548123579378966497e-03
112 #define Pa2 7.93650778754435631476282786423e-04
113 #define Pa3 -5.95235082566672847950717262222e-04
114 #define Pa4 8.41428560346653702135821806252e-04
115 #define Pa5 -1.89773526463879200348872089421e-03
116 #define Pa6 5.69394463439411649408050664078e-03
117 #define Pa7 -1.44705562421428915453880392761e-02
118 
119 static const double zero = 0., one = 1.0, tiny = 1e-300;
120 
121 double
122 tgamma(double x)
123 {
124  struct Double u;
125 
126  if (x >= 6) {
127  if(x > 171.63)
128  return(x/zero);
129  u = large_gam(x);
130  return(__exp__D(u.a, u.b));
131  } else if (x >= 1.0 + LEFT + x0)
132  return (small_gam(x));
133  else if (x > 1.e-17)
134  return (smaller_gam(x));
135  else if (x > -1.e-17) {
136  if (x != 0.0)
137  u.a = one - tiny; /* raise inexact */
138  return (one/x);
139  } else if (!finite(x)) {
140  return (x - x); /* x = NaN, -Inf */
141  } else
142  return (neg_gam(x));
143 }
144 
145 /*
146  * We simply call tgamma() rather than bloating the math library
147  * with a float-optimized version of it. The reason is that tgammaf()
148  * is essentially useless, since the function is superexponential
149  * and floats have very limited range. -- das@freebsd.org
150  */
151 
152 float
153 tgammaf(float x)
154 {
155  return tgamma(x);
156 }
157 
158 /*
159  * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
160  */
161 
162 static struct Double
163 large_gam(double x)
164 {
165  double z, p;
166  struct Double t, u, v;
167 
168  z = one/(x*x);
169  p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
170  p = p/x;
171 
172  u = __log__D(x);
173  u.a -= one;
174  v.a = (x -= .5);
175  TRUNC(v.a);
176  v.b = x - v.a;
177  t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
178  t.b = v.b*u.a + x*u.b;
179  /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
180  t.b += lns2pi_lo; t.b += p;
181  u.a = lns2pi_hi + t.b; u.a += t.a;
182  u.b = t.a - u.a;
183  u.b += lns2pi_hi; u.b += t.b;
184  return (u);
185 }
186 
187 /*
188  * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
189  * It also has correct monotonicity.
190  */
191 
192 static double
193 small_gam(double x)
194 {
195  double y, ym1, t;
196  struct Double yy, r;
197  y = x - one;
198  ym1 = y - one;
199  if (y <= 1.0 + (LEFT + x0)) {
200  yy = ratfun_gam(y - x0, 0);
201  return (yy.a + yy.b);
202  }
203  r.a = y;
204  TRUNC(r.a);
205  yy.a = r.a - one;
206  y = ym1;
207  yy.b = r.b = y - yy.a;
208  /* Argument reduction: G(x+1) = x*G(x) */
209  for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
210  t = r.a*yy.a;
211  r.b = r.a*yy.b + y*r.b;
212  r.a = t;
213  TRUNC(r.a);
214  r.b += (t - r.a);
215  }
216  /* Return r*tgamma(y). */
217  yy = ratfun_gam(y - x0, 0);
218  y = r.b*(yy.a + yy.b) + r.a*yy.b;
219  y += yy.a*r.a;
220  return (y);
221 }
222 
223 /*
224  * Good on (0, 1+x0+LEFT]. Accurate to 1ulp.
225  */
226 
227 static double
228 smaller_gam(double x)
229 {
230  double t, d;
231  struct Double r, xx;
232  if (x < x0 + LEFT) {
233  t = x;
234  TRUNC(t);
235  d = (t+x)*(x-t);
236  t *= t;
237  xx.a = (t + x);
238  TRUNC(xx.a);
239  xx.b = x - xx.a; xx.b += t; xx.b += d;
240  t = (one-x0); t += x;
241  d = (one-x0); d -= t; d += x;
242  x = xx.a + xx.b;
243  } else {
244  xx.a = x;
245  TRUNC(xx.a);
246  xx.b = x - xx.a;
247  t = x - x0;
248  d = (-x0 -t); d += x;
249  }
250  r = ratfun_gam(t, d);
251  d = r.a/x;
252  TRUNC(d);
253  r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
254  return (d + r.a/x);
255 }
256 
257 /*
258  * returns (z+c)^2 * P(z)/Q(z) + a0
259  */
260 
261 static struct Double
262 ratfun_gam(double z, double c)
263 {
264  double p, q;
265  struct Double r, t;
266 
267  q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
268  p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
269 
270  /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
271  p = p/q;
272  t.a = z;
273  TRUNC(t.a); /* t ~= z + c */
274  t.b = (z - t.a) + c;
275  t.b *= (t.a + z);
276  q = (t.a *= t.a); /* t = (z+c)^2 */
277  TRUNC(t.a);
278  t.b += (q - t.a);
279  r.a = p;
280  TRUNC(r.a); /* r = P/Q */
281  r.b = p - r.a;
282  t.b = t.b*p + t.a*r.b + a0_lo;
283  t.a *= r.a; /* t = (z+c)^2*(P/Q) */
284  r.a = t.a + a0_hi;
285  TRUNC(r.a);
286  r.b = ((a0_hi-r.a) + t.a) + t.b;
287  return (r); /* r = a0 + t */
288 }
289 
290 static double
291 neg_gam(double x)
292 {
293  int sgn = 1;
294  struct Double lg, lsine;
295  double y, z;
296 
297  y = ceil(x);
298  if (y == x) /* Negative integer. */
299  return ((x - x) / zero);
300  z = y - x;
301  if (z > 0.5)
302  z = one - z;
303  y = 0.5 * y;
304  if (y == ceil(y))
305  sgn = -1;
306  if (z < .25)
307  z = sin(M_PI*z);
308  else
309  z = cos(M_PI*(0.5-z));
310  /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
311  if (x < -170) {
312  if (x < -190)
313  return ((double)sgn*tiny*tiny);
314  y = one - x; /* exact: 128 < |x| < 255 */
315  lg = large_gam(y);
316  lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */
317  lg.a -= lsine.a; /* exact (opposite signs) */
318  lg.b -= lsine.b;
319  y = -(lg.a + lg.b);
320  z = (y + lg.a) + lg.b;
321  y = __exp__D(y, z);
322  if (sgn < 0) y = -y;
323  return (y);
324  }
325  y = one-x;
326  if (one-y == x)
327  y = tgamma(y);
328  else /* 1-x is inexact */
329  y = -x*tgamma(-x);
330  if (sgn < 0) y = -y;
331  return (M_PI / (y*z));
332 }
#define Pa6
Definition: b_tgamma.c:116
#define Q0
Definition: b_tgamma.c:95
#define P2
Definition: b_tgamma.c:92
#define a0_lo
Definition: b_tgamma.c:89
#define M_PI
Definition: math.h:17
#define Pa3
Definition: b_tgamma.c:113
#define Q3
Definition: b_tgamma.c:98
#define TRUNC(d)
Definition: math_private.h:393
#define x0
Definition: b_tgamma.c:86
#define one
Definition: k_tan.c:68
#define P4
Definition: b_tgamma.c:94
#define finite(x)
Definition: math.h:40
#define Q8
Definition: b_tgamma.c:103
#define LEFT
Definition: b_tgamma.c:85
c(generic_all_nodes)
#define sin(x)
Definition: math.h:194
#define lns2pi_lo
Definition: b_tgamma.c:109
struct Double __log__D(double x)
Definition: b_log__D.c:354
#define Q4
Definition: b_tgamma.c:99
#define Q5
Definition: b_tgamma.c:100
#define Pa7
Definition: b_tgamma.c:117
double a
Definition: math_private.h:405
double __exp__D(double x, double c)
Definition: b_exp__D.c:84
#define cos(x)
Definition: math.h:172
#define Q7
Definition: b_tgamma.c:102
double tgamma(double x)
Definition: b_tgamma.c:122
#define ceil(x)
Definition: math.h:170
#define Pa4
Definition: b_tgamma.c:114
#define P3
Definition: b_tgamma.c:93
#define a0_hi
Definition: b_tgamma.c:88
float tgammaf(float x)
Definition: b_tgamma.c:153
#define Pa1
Definition: b_tgamma.c:111
#define Pa5
Definition: b_tgamma.c:115
#define Q1
Definition: b_tgamma.c:96
#define P0
Definition: b_tgamma.c:90
#define lns2pi_hi
Definition: b_tgamma.c:108
#define P1
Definition: b_tgamma.c:91
#define Pa2
Definition: b_tgamma.c:112
#define Q2
Definition: b_tgamma.c:97
#define Q6
Definition: b_tgamma.c:101
double b
Definition: math_private.h:406
#define Pa0
Definition: b_tgamma.c:110