Numworks Epsilon  1.4.1
Graphing Calculator Operating System
b_log__D.c
Go to the documentation of this file.
1 /* $OpenBSD: b_log__D.c,v 1.4 2009/10/27 23:59:29 deraadt Exp $ */
2 /*
3  * Copyright (c) 1992, 1993
4  * The Regents of the University of California. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  * notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  * notice, this list of conditions and the following disclaimer in the
13  * documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  * may be used to endorse or promote products derived from this software
16  * without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include "math.h"
32 #include "math_private.h"
33 
34 /* Table-driven natural logarithm.
35  *
36  * This code was derived, with minor modifications, from:
37  * Peter Tang, "Table-Driven Implementation of the
38  * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
39  * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
40  *
41  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
42  * where F = j/128 for j an integer in [0, 128].
43  *
44  * log(2^m) = log2_hi*m + log2_tail*m
45  * since m is an integer, the dominant term is exact.
46  * m has at most 10 digits (for subnormal numbers),
47  * and log2_hi has 11 trailing zero bits.
48  *
49  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
50  * logF_hi[] + 512 is exact.
51  *
52  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
53  * the leading term is calculated to extra precision in two
54  * parts, the larger of which adds exactly to the dominant
55  * m and F terms.
56  * There are two cases:
57  * 1. when m, j are non-zero (m | j), use absolute
58  * precision for the leading term.
59  * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
60  * In this case, use a relative precision of 24 bits.
61  * (This is done differently in the original paper)
62  *
63  * Special cases:
64  * 0 return signalling -Inf
65  * neg return signalling NaN
66  * +Inf return +Inf
67 */
68 
69 #define N 128
70 
71 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
72  * Used for generation of extend precision logarithms.
73  * The constant 35184372088832 is 2^45, so the divide is exact.
74  * It ensures correct reading of logF_head, even for inaccurate
75  * decimal-to-binary conversion routines. (Everybody gets the
76  * right answer for integers less than 2^53.)
77  * Values for log(F) were generated using error < 10^-57 absolute
78  * with the bc -l package.
79 */
80 static const double A1 = .08333333333333178827;
81 static const double A2 = .01250000000377174923;
82 static const double A3 = .002232139987919447809;
83 static const double A4 = .0004348877777076145742;
84 
85 static const double logF_head[N+1] = {
86  0.,
87  .007782140442060381246,
88  .015504186535963526694,
89  .023167059281547608406,
90  .030771658666765233647,
91  .038318864302141264488,
92  .045809536031242714670,
93  .053244514518837604555,
94  .060624621816486978786,
95  .067950661908525944454,
96  .075223421237524235039,
97  .082443669210988446138,
98  .089612158689760690322,
99  .096729626458454731618,
100  .103796793681567578460,
101  .110814366340264314203,
102  .117783035656430001836,
103  .124703478501032805070,
104  .131576357788617315236,
105  .138402322859292326029,
106  .145182009844575077295,
107  .151916042025732167530,
108  .158605030176659056451,
109  .165249572895390883786,
110  .171850256926518341060,
111  .178407657472689606947,
112  .184922338493834104156,
113  .191394852999565046047,
114  .197825743329758552135,
115  .204215541428766300668,
116  .210564769107350002741,
117  .216873938300523150246,
118  .223143551314024080056,
119  .229374101064877322642,
120  .235566071312860003672,
121  .241719936886966024758,
122  .247836163904594286577,
123  .253915209980732470285,
124  .259957524436686071567,
125  .265963548496984003577,
126  .271933715484010463114,
127  .277868451003087102435,
128  .283768173130738432519,
129  .289633292582948342896,
130  .295464212893421063199,
131  .301261330578199704177,
132  .307025035294827830512,
133  .312755710004239517729,
134  .318453731118097493890,
135  .324119468654316733591,
136  .329753286372579168528,
137  .335355541920762334484,
138  .340926586970454081892,
139  .346466767346100823488,
140  .351976423156884266063,
141  .357455888922231679316,
142  .362905493689140712376,
143  .368325561158599157352,
144  .373716409793814818840,
145  .379078352934811846353,
146  .384411698910298582632,
147  .389716751140440464951,
148  .394993808240542421117,
149  .400243164127459749579,
150  .405465108107819105498,
151  .410659924985338875558,
152  .415827895143593195825,
153  .420969294644237379543,
154  .426084395310681429691,
155  .431173464818130014464,
156  .436236766774527495726,
157  .441274560805140936281,
158  .446287102628048160113,
159  .451274644139630254358,
160  .456237433481874177232,
161  .461175715122408291790,
162  .466089729924533457960,
163  .470979715219073113985,
164  .475845904869856894947,
165  .480688529345570714212,
166  .485507815781602403149,
167  .490303988045525329653,
168  .495077266798034543171,
169  .499827869556611403822,
170  .504556010751912253908,
171  .509261901790523552335,
172  .513945751101346104405,
173  .518607764208354637958,
174  .523248143765158602036,
175  .527867089620485785417,
176  .532464798869114019908,
177  .537041465897345915436,
178  .541597282432121573947,
179  .546132437597407260909,
180  .550647117952394182793,
181  .555141507540611200965,
182  .559615787935399566777,
183  .564070138285387656651,
184  .568504735352689749561,
185  .572919753562018740922,
186  .577315365035246941260,
187  .581691739635061821900,
188  .586049045003164792433,
189  .590387446602107957005,
190  .594707107746216934174,
191  .599008189645246602594,
192  .603290851438941899687,
193  .607555250224322662688,
194  .611801541106615331955,
195  .616029877215623855590,
196  .620240409751204424537,
197  .624433288012369303032,
198  .628608659422752680256,
199  .632766669570628437213,
200  .636907462236194987781,
201  .641031179420679109171,
202  .645137961373620782978,
203  .649227946625615004450,
204  .653301272011958644725,
205  .657358072709030238911,
206  .661398482245203922502,
207  .665422632544505177065,
208  .669430653942981734871,
209  .673422675212350441142,
210  .677398823590920073911,
211  .681359224807238206267,
212  .685304003098281100392,
213  .689233281238557538017,
214  .693147180560117703862
215 };
216 
217 static const double logF_tail[N+1] = {
218  0.,
219  -.00000000000000543229938420049,
220  .00000000000000172745674997061,
221  -.00000000000001323017818229233,
222  -.00000000000001154527628289872,
223  -.00000000000000466529469958300,
224  .00000000000005148849572685810,
225  -.00000000000002532168943117445,
226  -.00000000000005213620639136504,
227  -.00000000000001819506003016881,
228  .00000000000006329065958724544,
229  .00000000000008614512936087814,
230  -.00000000000007355770219435028,
231  .00000000000009638067658552277,
232  .00000000000007598636597194141,
233  .00000000000002579999128306990,
234  -.00000000000004654729747598444,
235  -.00000000000007556920687451336,
236  .00000000000010195735223708472,
237  -.00000000000017319034406422306,
238  -.00000000000007718001336828098,
239  .00000000000010980754099855238,
240  -.00000000000002047235780046195,
241  -.00000000000008372091099235912,
242  .00000000000014088127937111135,
243  .00000000000012869017157588257,
244  .00000000000017788850778198106,
245  .00000000000006440856150696891,
246  .00000000000016132822667240822,
247  -.00000000000007540916511956188,
248  -.00000000000000036507188831790,
249  .00000000000009120937249914984,
250  .00000000000018567570959796010,
251  -.00000000000003149265065191483,
252  -.00000000000009309459495196889,
253  .00000000000017914338601329117,
254  -.00000000000001302979717330866,
255  .00000000000023097385217586939,
256  .00000000000023999540484211737,
257  .00000000000015393776174455408,
258  -.00000000000036870428315837678,
259  .00000000000036920375082080089,
260  -.00000000000009383417223663699,
261  .00000000000009433398189512690,
262  .00000000000041481318704258568,
263  -.00000000000003792316480209314,
264  .00000000000008403156304792424,
265  -.00000000000034262934348285429,
266  .00000000000043712191957429145,
267  -.00000000000010475750058776541,
268  -.00000000000011118671389559323,
269  .00000000000037549577257259853,
270  .00000000000013912841212197565,
271  .00000000000010775743037572640,
272  .00000000000029391859187648000,
273  -.00000000000042790509060060774,
274  .00000000000022774076114039555,
275  .00000000000010849569622967912,
276  -.00000000000023073801945705758,
277  .00000000000015761203773969435,
278  .00000000000003345710269544082,
279  -.00000000000041525158063436123,
280  .00000000000032655698896907146,
281  -.00000000000044704265010452446,
282  .00000000000034527647952039772,
283  -.00000000000007048962392109746,
284  .00000000000011776978751369214,
285  -.00000000000010774341461609578,
286  .00000000000021863343293215910,
287  .00000000000024132639491333131,
288  .00000000000039057462209830700,
289  -.00000000000026570679203560751,
290  .00000000000037135141919592021,
291  -.00000000000017166921336082431,
292  -.00000000000028658285157914353,
293  -.00000000000023812542263446809,
294  .00000000000006576659768580062,
295  -.00000000000028210143846181267,
296  .00000000000010701931762114254,
297  .00000000000018119346366441110,
298  .00000000000009840465278232627,
299  -.00000000000033149150282752542,
300  -.00000000000018302857356041668,
301  -.00000000000016207400156744949,
302  .00000000000048303314949553201,
303  -.00000000000071560553172382115,
304  .00000000000088821239518571855,
305  -.00000000000030900580513238244,
306  -.00000000000061076551972851496,
307  .00000000000035659969663347830,
308  .00000000000035782396591276383,
309  -.00000000000046226087001544578,
310  .00000000000062279762917225156,
311  .00000000000072838947272065741,
312  .00000000000026809646615211673,
313  -.00000000000010960825046059278,
314  .00000000000002311949383800537,
315  -.00000000000058469058005299247,
316  -.00000000000002103748251144494,
317  -.00000000000023323182945587408,
318  -.00000000000042333694288141916,
319  -.00000000000043933937969737844,
320  .00000000000041341647073835565,
321  .00000000000006841763641591466,
322  .00000000000047585534004430641,
323  .00000000000083679678674757695,
324  -.00000000000085763734646658640,
325  .00000000000021913281229340092,
326  -.00000000000062242842536431148,
327  -.00000000000010983594325438430,
328  .00000000000065310431377633651,
329  -.00000000000047580199021710769,
330  -.00000000000037854251265457040,
331  .00000000000040939233218678664,
332  .00000000000087424383914858291,
333  .00000000000025218188456842882,
334  -.00000000000003608131360422557,
335  -.00000000000050518555924280902,
336  .00000000000078699403323355317,
337  -.00000000000067020876961949060,
338  .00000000000016108575753932458,
339  .00000000000058527188436251509,
340  -.00000000000035246757297904791,
341  -.00000000000018372084495629058,
342  .00000000000088606689813494916,
343  .00000000000066486268071468700,
344  .00000000000063831615170646519,
345  .00000000000025144230728376072,
346  -.00000000000017239444525614834
347 };
348 
349 /*
350  * Extra precision variant, returning struct {double a, b;};
351  * log(x) = a+b to 63 bits, with a rounded to 26 bits.
352  */
353 struct Double
354 __log__D(double x)
355 {
356  int m, j;
357  double F, f, g, q, u, v, u2;
358  volatile double u1;
359  struct Double r;
360 
361  /* Argument reduction: 1 <= g < 2; x/2^m = g; */
362  /* y = F*(1 + f/F) for |f| <= 2^-8 */
363 
364  m = logb(x);
365  g = ldexp(x, -m);
366  if (m == -1022) {
367  j = logb(g);
368  m += j;
369  g = ldexp(g, -j);
370  }
371  j = N*(g-1) + .5;
372  F = (1.0/N) * j + 1;
373  f = g - F;
374 
375  g = 1/(2*F+f);
376  u = 2*f*g;
377  v = u*u;
378  q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
379  if (m | j) {
380  u1 = u + 513;
381  u1 -= 513;
382  }
383  else {
384  u1 = u;
385  TRUNC(u1);
386  }
387  u2 = (2.0*(f - F*u1) - u1*f) * g;
388 
389  u1 += m*logF_head[N] + logF_head[j];
390 
391  u2 += logF_tail[j]; u2 += q;
392  u2 += logF_tail[N]*m;
393  r.a = u1 + u2; /* Only difference is here */
394  TRUNC(r.a);
395  r.b = (u1 - r.a) + u2;
396  return (r);
397 }
#define TRUNC(d)
Definition: math_private.h:393
#define ldexp(x, n)
Definition: math.h:181
struct Double __log__D(double x)
Definition: b_log__D.c:354
double a
Definition: math_private.h:405
#define N
Definition: b_log__D.c:69
#define logb(x)
Definition: math.h:188
double b
Definition: math_private.h:406