Numworks Epsilon  1.4.1
Graphing Calculator Operating System
b_exp__D.c
Go to the documentation of this file.
1 /* $OpenBSD: b_exp__D.c,v 1.5 2009/10/27 23:59:29 deraadt Exp $ */
2 /*
3  * Copyright (c) 1985, 1993
4  * The Regents of the University of California. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  * notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  * notice, this list of conditions and the following disclaimer in the
13  * documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  * may be used to endorse or promote products derived from this software
16  * without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /* EXP(X)
32  * RETURN THE EXPONENTIAL OF X
33  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
34  * CODED IN C BY K.C. NG, 1/19/85;
35  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
36  *
37  * Required system supported functions:
38  * scalb(x,n)
39  * copysign(x,y)
40  * finite(x)
41  *
42  * Method:
43  * 1. Argument Reduction: given the input x, find r and integer k such
44  * that
45  * x = k*ln2 + r, |r| <= 0.5*ln2 .
46  * r will be represented as r := z+c for better accuracy.
47  *
48  * 2. Compute exp(r) by
49  *
50  * exp(r) = 1 + r + r*R1/(2-R1),
51  * where
52  * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
53  *
54  * 3. exp(x) = 2^k * exp(r) .
55  *
56  * Special cases:
57  * exp(INF) is INF, exp(NaN) is NaN;
58  * exp(-INF)= 0;
59  * for finite argument, only exp(0)=1 is exact.
60  *
61  * Accuracy:
62  * exp(x) returns the exponential of x nearly rounded. In a test run
63  * with 1,156,000 random arguments on a VAX, the maximum observed
64  * error was 0.869 ulps (units in the last place).
65  */
66 
67 #include "math.h"
68 #include "math_private.h"
69 
70 static const double p1 = 0x1.555555555553ep-3;
71 static const double p2 = -0x1.6c16c16bebd93p-9;
72 static const double p3 = 0x1.1566aaf25de2cp-14;
73 static const double p4 = -0x1.bbd41c5d26bf1p-20;
74 static const double p5 = 0x1.6376972bea4d0p-25;
75 static const double ln2hi = 0x1.62e42fee00000p-1;
76 static const double ln2lo = 0x1.a39ef35793c76p-33;
77 static const double lnhuge = 0x1.6602b15b7ecf2p9;
78 static const double lntiny = -0x1.77af8ebeae354p9;
79 static const double invln2 = 0x1.71547652b82fep0;
80 
81 /* returns exp(r = x + c) for |c| < |x| with no overlap. */
82 
83 double
84 __exp__D(double x, double c)
85 {
86  double z, hi, lo;
87  int k;
88 
89  if (isnan(x)) /* x is NaN */
90  return(x);
91  if ( x <= lnhuge ) {
92  if ( x >= lntiny ) {
93 
94  /* argument reduction : x --> x - k*ln2 */
95  z = invln2*x;
96  k = z + copysign(.5, x);
97 
98  /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
99 
100  hi=(x-k*ln2hi); /* Exact. */
101  x= hi - (lo = k*ln2lo-c);
102  /* return 2^k*[1+x+x*c/(2+c)] */
103  z=x*x;
104  c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
105  c = (x*c)/(2.0-c);
106 
107  return scalb(1.+(hi-(lo - c)), k);
108  }
109  /* end of x > lntiny */
110 
111  else
112  /* exp(-big#) underflows to zero */
113  if(finite(x)) return(scalb(1.0,-5000));
114 
115  /* exp(-INF) is zero */
116  else return(0.0);
117  }
118  /* end of x < lnhuge */
119 
120  else
121  /* exp(INF) is INF, exp(+big#) overflows to INF */
122  return( finite(x) ? scalb(1.0,5000) : x);
123 }
#define copysign(x, y)
Definition: math.h:171
#define finite(x)
Definition: math.h:40
c(generic_all_nodes)
double scalb(double x, double fn)
Definition: e_scalb.c:32
double __exp__D(double x, double c)
Definition: b_exp__D.c:84
#define isnan(x)
Definition: math.h:43