Numworks Epsilon  1.4.1
Graphing Calculator Operating System
k_tan.c
Go to the documentation of this file.
1 /* @(#)k_tan.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* __kernel_tan( x, y, k )
14  * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
15  * Input x is assumed to be bounded by ~pi/4 in magnitude.
16  * Input y is the tail of x.
17  * Input k indicates whether tan (if k=1) or
18  * -1/tan (if k= -1) is returned.
19  *
20  * Algorithm
21  * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
22  * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
23  * 3. tan(x) is approximated by a odd polynomial of degree 27 on
24  * [0,0.67434]
25  * 3 27
26  * tan(x) ~ x + T1*x + ... + T13*x
27  * where
28  *
29  * |tan(x) 2 4 26 | -59.2
30  * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
31  * | x |
32  *
33  * Note: tan(x+y) = tan(x) + tan'(x)*y
34  * ~ tan(x) + (1+x*x)*y
35  * Therefore, for better accuracy in computing tan(x+y), let
36  * 3 2 2 2 2
37  * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
38  * then
39  * 3 2
40  * tan(x+y) = x + (T1*x + (x *(r+y)+y))
41  *
42  * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
43  * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
44  * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
45  */
46 
47 #include "math.h"
48 #include "math_private.h"
49 
50 static const double xxx[] = {
51  3.33333333333334091986e-01, /* 3FD55555, 55555563 */
52  1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
53  5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
54  2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
55  8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
56  3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
57  1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
58  5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
59  2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
60  7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
61  7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
62  -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
63  2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
64 /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
65 /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
66 /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
67 };
68 #define one xxx[13]
69 #define pio4 xxx[14]
70 #define pio4lo xxx[15]
71 #define T xxx
72 
73 double
74 __kernel_tan(double x, double y, int iy)
75 {
76  double z, r, v, w, s;
77  int32_t ix, hx;
78 
79  GET_HIGH_WORD(hx, x); /* high word of x */
80  ix = hx & 0x7fffffff; /* high word of |x| */
81  if (ix < 0x3e300000) { /* x < 2**-28 */
82  if ((int) x == 0) { /* generate inexact */
83  u_int32_t low;
84  GET_LOW_WORD(low, x);
85  if(((ix | low) | (iy + 1)) == 0)
86  return one / fabs(x);
87  else {
88  if (iy == 1)
89  return x;
90  else { /* compute -1 / (x+y) carefully */
91  double a, t;
92 
93  z = w = x + y;
94  SET_LOW_WORD(z, 0);
95  v = y - (z - x);
96  t = a = -one / w;
97  SET_LOW_WORD(t, 0);
98  s = one + t * z;
99  return t + a * (s + t * v);
100  }
101  }
102  }
103  }
104  if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
105  if (hx < 0) {
106  x = -x;
107  y = -y;
108  }
109  z = pio4 - x;
110  w = pio4lo - y;
111  x = z + w;
112  y = 0.0;
113  }
114  z = x * x;
115  w = z * z;
116  /*
117  * Break x^5*(T[1]+x^2*T[2]+...) into
118  * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
119  * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
120  */
121  r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
122  w * T[11]))));
123  v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
124  w * T[12])))));
125  s = z * x;
126  r = y + z * (s * (r + v) + y);
127  r += T[0] * s;
128  w = x + r;
129  if (ix >= 0x3FE59428) {
130  v = (double) iy;
131  return (double) (1 - ((hx >> 30) & 2)) *
132  (v - 2.0 * (x - (w * w / (w + v) - r)));
133  }
134  if (iy == 1)
135  return w;
136  else {
137  /*
138  * if allow error up to 2 ulp, simply return
139  * -1.0 / (x+r) here
140  */
141  /* compute -1.0 / (x+r) accurately */
142  double a, t;
143  z = w;
144  SET_LOW_WORD(z, 0);
145  v = r - (z - x); /* z+v = r+x */
146  t = a = -1.0 / w; /* a = -1.0/w */
147  SET_LOW_WORD(t, 0);
148  s = 1.0 + t * z;
149  return t + a * (s + t * v);
150  }
151 }
#define GET_HIGH_WORD(i, d)
Definition: math_private.h:269
#define one
Definition: k_tan.c:68
double __kernel_tan(double x, double y, int iy)
Definition: k_tan.c:74
uint32_t u_int32_t
Definition: types.h:10
#define fabs(x)
Definition: math.h:178
#define SET_LOW_WORD(d, v)
Definition: math_private.h:307
double a
Definition: math_private.h:405
#define GET_LOW_WORD(i, d)
Definition: math_private.h:278
#define pio4
Definition: k_tan.c:69
signed int int32_t
Definition: stdint.h:11
#define pio4lo
Definition: k_tan.c:70
#define T
Definition: k_tan.c:71