Numworks Epsilon  1.4.1
Graphing Calculator Operating System
s_expm1.c
Go to the documentation of this file.
1 /* @(#)s_expm1.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* expm1(x)
14  * Returns exp(x)-1, the exponential of x minus 1.
15  *
16  * Method
17  * 1. Argument reduction:
18  * Given x, find r and integer k such that
19  *
20  * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
21  *
22  * Here a correction term c will be computed to compensate
23  * the error in r when rounded to a floating-point number.
24  *
25  * 2. Approximating expm1(r) by a special rational function on
26  * the interval [0,0.34658]:
27  * Since
28  * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
29  * we define R1(r*r) by
30  * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
31  * That is,
32  * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
33  * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
34  * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
35  * We use a special Remes algorithm on [0,0.347] to generate
36  * a polynomial of degree 5 in r*r to approximate R1. The
37  * maximum error of this polynomial approximation is bounded
38  * by 2**-61. In other words,
39  * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
40  * where Q1 = -1.6666666666666567384E-2,
41  * Q2 = 3.9682539681370365873E-4,
42  * Q3 = -9.9206344733435987357E-6,
43  * Q4 = 2.5051361420808517002E-7,
44  * Q5 = -6.2843505682382617102E-9;
45  * (where z=r*r, and the values of Q1 to Q5 are listed below)
46  * with error bounded by
47  * | 5 | -61
48  * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
49  * | |
50  *
51  * expm1(r) = exp(r)-1 is then computed by the following
52  * specific way which minimize the accumulation rounding error:
53  * 2 3
54  * r r [ 3 - (R1 + R1*r/2) ]
55  * expm1(r) = r + --- + --- * [--------------------]
56  * 2 2 [ 6 - r*(3 - R1*r/2) ]
57  *
58  * To compensate the error in the argument reduction, we use
59  * expm1(r+c) = expm1(r) + c + expm1(r)*c
60  * ~ expm1(r) + c + r*c
61  * Thus c+r*c will be added in as the correction terms for
62  * expm1(r+c). Now rearrange the term to avoid optimization
63  * screw up:
64  * ( 2 2 )
65  * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
66  * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
67  * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
68  * ( )
69  *
70  * = r - E
71  * 3. Scale back to obtain expm1(x):
72  * From step 1, we have
73  * expm1(x) = either 2^k*[expm1(r)+1] - 1
74  * = or 2^k*[expm1(r) + (1-2^-k)]
75  * 4. Implementation notes:
76  * (A). To save one multiplication, we scale the coefficient Qi
77  * to Qi*2^i, and replace z by (x^2)/2.
78  * (B). To achieve maximum accuracy, we compute expm1(x) by
79  * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
80  * (ii) if k=0, return r-E
81  * (iii) if k=-1, return 0.5*(r-E)-0.5
82  * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
83  * else return 1.0+2.0*(r-E);
84  * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
85  * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
86  * (vii) return 2^k(1-((E+2^-k)-r))
87  *
88  * Special cases:
89  * expm1(INF) is INF, expm1(NaN) is NaN;
90  * expm1(-INF) is -1, and
91  * for finite argument, only expm1(0)=0 is exact.
92  *
93  * Accuracy:
94  * according to an error analysis, the error is always less than
95  * 1 ulp (unit in the last place).
96  *
97  * Misc. info.
98  * For IEEE double
99  * if x > 7.09782712893383973096e+02 then expm1(x) overflow
100  *
101  * Constants:
102  * The hexadecimal values are the intended ones for the following
103  * constants. The decimal values may be used, provided that the
104  * compiler will convert from decimal to binary accurately enough
105  * to produce the hexadecimal values shown.
106  */
107 
108 #include "math.h"
109 #include "math_private.h"
110 
111 static const double
112 one = 1.0,
113 huge = 1.0e+300,
114 tiny = 1.0e-300,
115 o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
116 ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
117 ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
118 invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
119  /* scaled coefficients related to expm1 */
120 Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
121 Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
122 Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
123 Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
124 Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
125 
126 double
127 expm1(double x)
128 {
129  double y,hi,lo,c,t,e,hxs,hfx,r1;
130  int32_t k,xsb;
131  u_int32_t hx;
132 
133  GET_HIGH_WORD(hx,x);
134  xsb = hx&0x80000000; /* sign bit of x */
135  if(xsb==0) y=x; else y= -x; /* y = |x| */
136  hx &= 0x7fffffff; /* high word of |x| */
137 
138  /* filter out huge and non-finite argument */
139  if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
140  if(hx >= 0x40862E42) { /* if |x|>=709.78... */
141  if(hx>=0x7ff00000) {
142  u_int32_t low;
143  GET_LOW_WORD(low,x);
144  if(((hx&0xfffff)|low)!=0)
145  return x+x; /* NaN */
146  else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
147  }
148  if(x > o_threshold) return huge*huge; /* overflow */
149  }
150  if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
151  if(x+tiny<0.0) /* raise inexact */
152  return tiny-one; /* return -1 */
153  }
154  }
155 
156  /* argument reduction */
157  if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
158  if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
159  if(xsb==0)
160  {hi = x - ln2_hi; lo = ln2_lo; k = 1;}
161  else
162  {hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
163  } else {
164  k = invln2*x+((xsb==0)?0.5:-0.5);
165  t = k;
166  hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
167  lo = t*ln2_lo;
168  }
169  x = hi - lo;
170  c = (hi-x)-lo;
171  }
172  else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
173  t = huge+x; /* return x with inexact flags when x!=0 */
174  return x - (t-(huge+x));
175  }
176  else k = 0;
177 
178  /* x is now in primary range */
179  hfx = 0.5*x;
180  hxs = x*hfx;
181  r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
182  t = 3.0-r1*hfx;
183  e = hxs*((r1-t)/(6.0 - x*t));
184  if(k==0) return x - (x*e-hxs); /* c is 0 */
185  else {
186  e = (x*(e-c)-c);
187  e -= hxs;
188  if(k== -1) return 0.5*(x-e)-0.5;
189  if(k==1)
190  if(x < -0.25) return -2.0*(e-(x+0.5));
191  else return one+2.0*(x-e);
192  if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
193  u_int32_t high;
194  y = one-(e-x);
195  GET_HIGH_WORD(high,y);
196  SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
197  return y-one;
198  }
199  t = one;
200  if(k<20) {
201  u_int32_t high;
202  SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
203  y = t-(e-x);
204  GET_HIGH_WORD(high,y);
205  SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
206  } else {
207  u_int32_t high;
208  SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */
209  y = x-(e+t);
210  y += one;
211  GET_HIGH_WORD(high,y);
212  SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
213  }
214  }
215  return y;
216 }
#define GET_HIGH_WORD(i, d)
Definition: math_private.h:269
#define Q3
Definition: b_tgamma.c:98
#define one
Definition: k_tan.c:68
double expm1(double x)
Definition: s_expm1.c:127
uint32_t u_int32_t
Definition: types.h:10
#define SET_HIGH_WORD(d, v)
Definition: math_private.h:297
c(generic_all_nodes)
#define Q4
Definition: b_tgamma.c:99
#define Q5
Definition: b_tgamma.c:100
#define GET_LOW_WORD(i, d)
Definition: math_private.h:278
#define Q1
Definition: b_tgamma.c:96
#define Q2
Definition: b_tgamma.c:97
signed int int32_t
Definition: stdint.h:11