Numworks Epsilon  1.4.1
Graphing Calculator Operating System
e_pow.c
Go to the documentation of this file.
1 /* @(#)e_pow.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* pow(x,y) return x**y
14  *
15  * n
16  * Method: Let x = 2 * (1+f)
17  * 1. Compute and return log2(x) in two pieces:
18  * log2(x) = w1 + w2,
19  * where w1 has 53-24 = 29 bit trailing zeros.
20  * 2. Perform y*log2(x) = n+y' by simulating multi-precision
21  * arithmetic, where |y'|<=0.5.
22  * 3. Return x**y = 2**n*exp(y'*log2)
23  *
24  * Special cases:
25  * 1. (anything) ** 0 is 1
26  * 2. (anything) ** 1 is itself
27  * 3. (anything) ** NAN is NAN
28  * 4. NAN ** (anything except 0) is NAN
29  * 5. +-(|x| > 1) ** +INF is +INF
30  * 6. +-(|x| > 1) ** -INF is +0
31  * 7. +-(|x| < 1) ** +INF is +0
32  * 8. +-(|x| < 1) ** -INF is +INF
33  * 9. +-1 ** +-INF is NAN
34  * 10. +0 ** (+anything except 0, NAN) is +0
35  * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
36  * 12. +0 ** (-anything except 0, NAN) is +INF
37  * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
38  * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
39  * 15. +INF ** (+anything except 0,NAN) is +INF
40  * 16. +INF ** (-anything except 0,NAN) is +0
41  * 17. -INF ** (anything) = -0 ** (-anything)
42  * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
43  * 19. (-anything except 0 and inf) ** (non-integer) is NAN
44  *
45  * Accuracy:
46  * pow(x,y) returns x**y nearly rounded. In particular
47  * pow(integer,integer)
48  * always returns the correct integer provided it is
49  * representable.
50  *
51  * Constants :
52  * The hexadecimal values are the intended ones for the following
53  * constants. The decimal values may be used, provided that the
54  * compiler will convert from decimal to binary accurately enough
55  * to produce the hexadecimal values shown.
56  */
57 
58 #include "math.h"
59 #include "math_private.h"
60 
61 static const double
62 bp[] = {1.0, 1.5,},
63 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
64 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
65 zero = 0.0,
66 one = 1.0,
67 two = 2.0,
68 two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
69 huge = 1.0e300,
70 tiny = 1.0e-300,
71  /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
72 L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
73 L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
74 L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
75 L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
76 L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
77 L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
78 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
79 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
80 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
81 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
82 P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
83 lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
84 lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
85 lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
86 ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
87 cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
88 cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
89 cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
90 ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
91 ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
92 ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
93 
94 double
95 pow(double x, double y)
96 {
97  double z,ax,z_h,z_l,p_h,p_l;
98  double yy1,t1,t2,r,s,t,u,v,w;
99  int32_t i,j,k,yisint,n;
100  int32_t hx,hy,ix,iy;
101  u_int32_t lx,ly;
102 
103  EXTRACT_WORDS(hx,lx,x);
104  EXTRACT_WORDS(hy,ly,y);
105  ix = hx&0x7fffffff; iy = hy&0x7fffffff;
106 
107  /* y==zero: x**0 = 1 */
108  if((iy|ly)==0) return one;
109 
110  /* +-NaN return x+y */
111  if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
112  iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
113  return x+y;
114 
115  /* determine if y is an odd int when x < 0
116  * yisint = 0 ... y is not an integer
117  * yisint = 1 ... y is an odd int
118  * yisint = 2 ... y is an even int
119  */
120  yisint = 0;
121  if(hx<0) {
122  if(iy>=0x43400000) yisint = 2; /* even integer y */
123  else if(iy>=0x3ff00000) {
124  k = (iy>>20)-0x3ff; /* exponent */
125  if(k>20) {
126  j = ly>>(52-k);
127  if((j<<(52-k))==ly) yisint = 2-(j&1);
128  } else if(ly==0) {
129  j = iy>>(20-k);
130  if((j<<(20-k))==iy) yisint = 2-(j&1);
131  }
132  }
133  }
134 
135  /* special value of y */
136  if(ly==0) {
137  if (iy==0x7ff00000) { /* y is +-inf */
138  if(((ix-0x3ff00000)|lx)==0)
139  return y - y; /* inf**+-1 is NaN */
140  else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
141  return (hy>=0)? y: zero;
142  else /* (|x|<1)**-,+inf = inf,0 */
143  return (hy<0)?-y: zero;
144  }
145  if(iy==0x3ff00000) { /* y is +-1 */
146  if(hy<0) return one/x; else return x;
147  }
148  if(hy==0x40000000) return x*x; /* y is 2 */
149  if(hy==0x3fe00000) { /* y is 0.5 */
150  if(hx>=0) /* x >= +0 */
151  return sqrt(x);
152  }
153  }
154 
155  ax = fabs(x);
156  /* special value of x */
157  if(lx==0) {
158  if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
159  z = ax; /*x is +-0,+-inf,+-1*/
160  if(hy<0) z = one/z; /* z = (1/|x|) */
161  if(hx<0) {
162  if(((ix-0x3ff00000)|yisint)==0) {
163  z = (z-z)/(z-z); /* (-1)**non-int is NaN */
164  } else if(yisint==1)
165  z = -z; /* (x<0)**odd = -(|x|**odd) */
166  }
167  return z;
168  }
169  }
170 
171  n = (hx>>31)+1;
172 
173  /* (x<0)**(non-int) is NaN */
174  if((n|yisint)==0) return (x-x)/(x-x);
175 
176  s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
177  if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
178 
179  /* |y| is huge */
180  if(iy>0x41e00000) { /* if |y| > 2**31 */
181  if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
182  if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
183  if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
184  }
185  /* over/underflow if x is not close to one */
186  if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
187  if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
188  /* now |1-x| is tiny <= 2**-20, suffice to compute
189  log(x) by x-x^2/2+x^3/3-x^4/4 */
190  t = ax-one; /* t has 20 trailing zeros */
191  w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
192  u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
193  v = t*ivln2_l-w*ivln2;
194  t1 = u+v;
195  SET_LOW_WORD(t1,0);
196  t2 = v-(t1-u);
197  } else {
198  double ss,s2,s_h,s_l,t_h,t_l;
199  n = 0;
200  /* take care subnormal number */
201  if(ix<0x00100000)
202  {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
203  n += ((ix)>>20)-0x3ff;
204  j = ix&0x000fffff;
205  /* determine interval */
206  ix = j|0x3ff00000; /* normalize ix */
207  if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
208  else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
209  else {k=0;n+=1;ix -= 0x00100000;}
210  SET_HIGH_WORD(ax,ix);
211 
212  /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
213  u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
214  v = one/(ax+bp[k]);
215  ss = u*v;
216  s_h = ss;
217  SET_LOW_WORD(s_h,0);
218  /* t_h=ax+bp[k] High */
219  t_h = zero;
220  SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
221  t_l = ax - (t_h-bp[k]);
222  s_l = v*((u-s_h*t_h)-s_h*t_l);
223  /* compute log(ax) */
224  s2 = ss*ss;
225  r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
226  r += s_l*(s_h+ss);
227  s2 = s_h*s_h;
228  t_h = 3.0+s2+r;
229  SET_LOW_WORD(t_h,0);
230  t_l = r-((t_h-3.0)-s2);
231  /* u+v = ss*(1+...) */
232  u = s_h*t_h;
233  v = s_l*t_h+t_l*ss;
234  /* 2/(3log2)*(ss+...) */
235  p_h = u+v;
236  SET_LOW_WORD(p_h,0);
237  p_l = v-(p_h-u);
238  z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
239  z_l = cp_l*p_h+p_l*cp+dp_l[k];
240  /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
241  t = (double)n;
242  t1 = (((z_h+z_l)+dp_h[k])+t);
243  SET_LOW_WORD(t1,0);
244  t2 = z_l-(((t1-t)-dp_h[k])-z_h);
245  }
246 
247  /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
248  yy1 = y;
249  SET_LOW_WORD(yy1,0);
250  p_l = (y-yy1)*t1+y*t2;
251  p_h = yy1*t1;
252  z = p_l+p_h;
253  EXTRACT_WORDS(j,i,z);
254  if (j>=0x40900000) { /* z >= 1024 */
255  if(((j-0x40900000)|i)!=0) /* if z > 1024 */
256  return s*huge*huge; /* overflow */
257  else {
258  if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
259  }
260  } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
261  if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
262  return s*tiny*tiny; /* underflow */
263  else {
264  if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
265  }
266  }
267  /*
268  * compute 2**(p_h+p_l)
269  */
270  i = j&0x7fffffff;
271  k = (i>>20)-0x3ff;
272  n = 0;
273  if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
274  n = j+(0x00100000>>(k+1));
275  k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
276  t = zero;
277  SET_HIGH_WORD(t,n&~(0x000fffff>>k));
278  n = ((n&0x000fffff)|0x00100000)>>(20-k);
279  if(j<0) n = -n;
280  p_h -= t;
281  }
282  t = p_l+p_h;
283  SET_LOW_WORD(t,0);
284  u = t*lg2_h;
285  v = (p_l-(t-p_h))*lg2+t*lg2_l;
286  z = u+v;
287  w = v-(z-u);
288  t = z*z;
289  t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
290  r = (z*t1)/(t1-two)-(w+z*w);
291  z = one-(r-z);
292  GET_HIGH_WORD(j,z);
293  j += (n<<20);
294  if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
295  else SET_HIGH_WORD(z,j);
296  return s*z;
297 }
#define GET_HIGH_WORD(i, d)
Definition: math_private.h:269
#define scalbn(x, n)
Definition: math.h:193
#define P2
Definition: b_tgamma.c:92
#define one
Definition: k_tan.c:68
#define P4
Definition: b_tgamma.c:94
uint32_t u_int32_t
Definition: types.h:10
#define fabs(x)
Definition: math.h:178
double pow(double x, double y)
Definition: e_pow.c:95
#define SET_HIGH_WORD(d, v)
Definition: math_private.h:297
#define SET_LOW_WORD(d, v)
Definition: math_private.h:307
#define EXTRACT_WORDS(ix0, ix1, d)
Definition: math_private.h:259
#define P3
Definition: b_tgamma.c:93
#define P1
Definition: b_tgamma.c:91
signed int int32_t
Definition: stdint.h:11
#define sqrt(x)
Definition: math.h:196