Numworks Epsilon  1.4.1
Graphing Calculator Operating System
e_exp.c
Go to the documentation of this file.
1 /* @(#)e_exp.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* exp(x)
14  * Returns the exponential of x.
15  *
16  * Method
17  * 1. Argument reduction:
18  * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
19  * Given x, find r and integer k such that
20  *
21  * x = k*ln2 + r, |r| <= 0.5*ln2.
22  *
23  * Here r will be represented as r = hi-lo for better
24  * accuracy.
25  *
26  * 2. Approximation of exp(r) by a special rational function on
27  * the interval [0,0.34658]:
28  * Write
29  * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
30  * We use a special Remes algorithm on [0,0.34658] to generate
31  * a polynomial of degree 5 to approximate R. The maximum error
32  * of this polynomial approximation is bounded by 2**-59. In
33  * other words,
34  * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
35  * (where z=r*r, and the values of P1 to P5 are listed below)
36  * and
37  * | 5 | -59
38  * | 2.0+P1*z+...+P5*z - R(z) | <= 2
39  * | |
40  * The computation of exp(r) thus becomes
41  * 2*r
42  * exp(r) = 1 + -------
43  * R - r
44  * r*R1(r)
45  * = 1 + r + ----------- (for better accuracy)
46  * 2 - R1(r)
47  * where
48  * 2 4 10
49  * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
50  *
51  * 3. Scale back to obtain exp(x):
52  * From step 1, we have
53  * exp(x) = 2^k * exp(r)
54  *
55  * Special cases:
56  * exp(INF) is INF, exp(NaN) is NaN;
57  * exp(-INF) is 0, and
58  * for finite argument, only exp(0)=1 is exact.
59  *
60  * Accuracy:
61  * according to an error analysis, the error is always less than
62  * 1 ulp (unit in the last place).
63  *
64  * Misc. info.
65  * For IEEE double
66  * if x > 7.09782712893383973096e+02 then exp(x) overflow
67  * if x < -7.45133219101941108420e+02 then exp(x) underflow
68  *
69  * Constants:
70  * The hexadecimal values are the intended ones for the following
71  * constants. The decimal values may be used, provided that the
72  * compiler will convert from decimal to binary accurately enough
73  * to produce the hexadecimal values shown.
74  */
75 
76 #include "math.h"
77 #include "math_private.h"
78 
79 static const double
80 one = 1.0,
81 halF[2] = {0.5,-0.5,},
82 huge = 1.0e+300,
83 twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
84 o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
85 u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
86 ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
87  -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
88 ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
89  -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
90 invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
91 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
92 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
93 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
94 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
95 P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
96 
97 
98 double
99 exp(double x) /* default IEEE double exp */
100 {
101  double y,hi,lo,c,t;
102  int32_t k,xsb;
103  u_int32_t hx;
104 
105  GET_HIGH_WORD(hx,x);
106  xsb = (hx>>31)&1; /* sign bit of x */
107  hx &= 0x7fffffff; /* high word of |x| */
108 
109  /* filter out non-finite argument */
110  if(hx >= 0x40862E42) { /* if |x|>=709.78... */
111  if(hx>=0x7ff00000) {
112  u_int32_t lx;
113  GET_LOW_WORD(lx,x);
114  if(((hx&0xfffff)|lx)!=0)
115  return x+x; /* NaN */
116  else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
117  }
118  if(x > o_threshold) return huge*huge; /* overflow */
119  if(x < u_threshold) return twom1000*twom1000; /* underflow */
120  }
121 
122  /* argument reduction */
123  if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
124  if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
125  hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
126  } else {
127  k = invln2*x+halF[xsb];
128  t = k;
129  hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
130  lo = t*ln2LO[0];
131  }
132  x = hi - lo;
133  }
134  else if(hx < 0x3e300000) { /* when |x|<2**-28 */
135  if(huge+x>one) return one+x;/* trigger inexact */
136  }
137  else k = 0;
138 
139  /* x is now in primary range */
140  t = x*x;
141  c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
142  if(k==0) return one-((x*c)/(c-2.0)-x);
143  else y = one-((lo-(x*c)/(2.0-c))-hi);
144  if(k >= -1021) {
145  u_int32_t hy;
146  GET_HIGH_WORD(hy,y);
147  SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
148  return y;
149  } else {
150  u_int32_t hy;
151  GET_HIGH_WORD(hy,y);
152  SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
153  return y*twom1000;
154  }
155 }
#define GET_HIGH_WORD(i, d)
Definition: math_private.h:269
#define P2
Definition: b_tgamma.c:92
#define one
Definition: k_tan.c:68
#define P4
Definition: b_tgamma.c:94
uint32_t u_int32_t
Definition: types.h:10
#define SET_HIGH_WORD(d, v)
Definition: math_private.h:297
c(generic_all_nodes)
#define P3
Definition: b_tgamma.c:93
#define GET_LOW_WORD(i, d)
Definition: math_private.h:278
#define P1
Definition: b_tgamma.c:91
signed int int32_t
Definition: stdint.h:11
double exp(double x)
Definition: e_exp.c:99