Numworks Epsilon  1.4.1
Graphing Calculator Operating System
s_erf.c
Go to the documentation of this file.
1 /* @(#)s_erf.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* double erf(double x)
14  * double erfc(double x)
15  * x
16  * 2 |\
17  * erf(x) = --------- | exp(-t*t)dt
18  * sqrt(pi) \|
19  * 0
20  *
21  * erfc(x) = 1-erf(x)
22  * Note that
23  * erf(-x) = -erf(x)
24  * erfc(-x) = 2 - erfc(x)
25  *
26  * Method:
27  * 1. For |x| in [0, 0.84375]
28  * erf(x) = x + x*R(x^2)
29  * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
30  * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
31  * where R = P/Q where P is an odd poly of degree 8 and
32  * Q is an odd poly of degree 10.
33  * -57.90
34  * | R - (erf(x)-x)/x | <= 2
35  *
36  *
37  * Remark. The formula is derived by noting
38  * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
39  * and that
40  * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
41  * is close to one. The interval is chosen because the fix
42  * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
43  * near 0.6174), and by some experiment, 0.84375 is chosen to
44  * guarantee the error is less than one ulp for erf.
45  *
46  * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
47  * c = 0.84506291151 rounded to single (24 bits)
48  * erf(x) = sign(x) * (c + P1(s)/Q1(s))
49  * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
50  * 1+(c+P1(s)/Q1(s)) if x < 0
51  * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
52  * Remark: here we use the taylor series expansion at x=1.
53  * erf(1+s) = erf(1) + s*Poly(s)
54  * = 0.845.. + P1(s)/Q1(s)
55  * That is, we use rational approximation to approximate
56  * erf(1+s) - (c = (single)0.84506291151)
57  * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
58  * where
59  * P1(s) = degree 6 poly in s
60  * Q1(s) = degree 6 poly in s
61  *
62  * 3. For x in [1.25,1/0.35(~2.857143)],
63  * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
64  * erf(x) = 1 - erfc(x)
65  * where
66  * R1(z) = degree 7 poly in z, (z=1/x^2)
67  * S1(z) = degree 8 poly in z
68  *
69  * 4. For x in [1/0.35,28]
70  * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
71  * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
72  * = 2.0 - tiny (if x <= -6)
73  * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
74  * erf(x) = sign(x)*(1.0 - tiny)
75  * where
76  * R2(z) = degree 6 poly in z, (z=1/x^2)
77  * S2(z) = degree 7 poly in z
78  *
79  * Note1:
80  * To compute exp(-x*x-0.5625+R/S), let s be a single
81  * precision number and s := x; then
82  * -x*x = -s*s + (s-x)*(s+x)
83  * exp(-x*x-0.5626+R/S) =
84  * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
85  * Note2:
86  * Here 4 and 5 make use of the asymptotic series
87  * exp(-x*x)
88  * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
89  * x*sqrt(pi)
90  * We use rational approximation to approximate
91  * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
92  * Here is the error bound for R1/S1 and R2/S2
93  * |R1/S1 - f(x)| < 2**(-62.57)
94  * |R2/S2 - f(x)| < 2**(-61.52)
95  *
96  * 5. For inf > x >= 28
97  * erf(x) = sign(x) *(1 - tiny) (raise inexact)
98  * erfc(x) = tiny*tiny (raise underflow) if x > 0
99  * = 2 - tiny if x<0
100  *
101  * 7. Special case:
102  * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
103  * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
104  * erfc/erf(NaN) is NaN
105  */
106 
107 
108 #include "math.h"
109 #include "math_private.h"
110 
111 static const double
112 tiny = 1e-300,
113 half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
114 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
115 two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
116  /* c = (float)0.84506291151 */
117 erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
118 /*
119  * Coefficients for approximation to erf on [0,0.84375]
120  */
121 efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
122 efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
123 pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
124 pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
125 pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
126 pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
127 pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
128 qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
129 qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
130 qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
131 qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
132 qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
133 /*
134  * Coefficients for approximation to erf in [0.84375,1.25]
135  */
136 pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
137 pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
138 pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
139 pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
140 pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
141 pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
142 pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
143 qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
144 qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
145 qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
146 qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
147 qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
148 qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
149 /*
150  * Coefficients for approximation to erfc in [1.25,1/0.35]
151  */
152 ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
153 ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
154 ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
155 ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
156 ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
157 ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
158 ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
159 ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
160 sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
161 sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
162 sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
163 sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
164 sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
165 sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
166 sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
167 sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
168 /*
169  * Coefficients for approximation to erfc in [1/.35,28]
170  */
171 rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
172 rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
173 rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
174 rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
175 rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
176 rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
177 rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
178 sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
179 sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
180 sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
181 sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
182 sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
183 sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
184 sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
185 
186 double
187 erf(double x)
188 {
189  int32_t hx,ix,i;
190  double R,S,P,Q,s,y,z,r;
191  GET_HIGH_WORD(hx,x);
192  ix = hx&0x7fffffff;
193  if(ix>=0x7ff00000) { /* erf(nan)=nan */
194  i = ((u_int32_t)hx>>31)<<1;
195  return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
196  }
197 
198  if(ix < 0x3feb0000) { /* |x|<0.84375 */
199  if(ix < 0x3e300000) { /* |x|<2**-28 */
200  if (ix < 0x00800000)
201  return 0.125*(8.0*x+efx8*x); /*avoid underflow */
202  return x + efx*x;
203  }
204  z = x*x;
205  r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
206  s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
207  y = r/s;
208  return x + x*y;
209  }
210  if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
211  s = fabs(x)-one;
212  P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
213  Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
214  if(hx>=0) return erx + P/Q; else return -erx - P/Q;
215  }
216  if (ix >= 0x40180000) { /* inf>|x|>=6 */
217  if(hx>=0) return one-tiny; else return tiny-one;
218  }
219  x = fabs(x);
220  s = one/(x*x);
221  if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */
222  R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
223  ra5+s*(ra6+s*ra7))))));
224  S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
225  sa5+s*(sa6+s*(sa7+s*sa8)))))));
226  } else { /* |x| >= 1/0.35 */
227  R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
228  rb5+s*rb6)))));
229  S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
230  sb5+s*(sb6+s*sb7))))));
231  }
232  z = x;
233  SET_LOW_WORD(z,0);
234  r = exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
235  if(hx>=0) return one-r/x; else return r/x-one;
236 }
237 
238 double
239 erfc(double x)
240 {
241  int32_t hx,ix;
242  double R,S,P,Q,s,y,z,r;
243  GET_HIGH_WORD(hx,x);
244  ix = hx&0x7fffffff;
245  if(ix>=0x7ff00000) { /* erfc(nan)=nan */
246  /* erfc(+-inf)=0,2 */
247  return (double)(((u_int32_t)hx>>31)<<1)+one/x;
248  }
249 
250  if(ix < 0x3feb0000) { /* |x|<0.84375 */
251  if(ix < 0x3c700000) /* |x|<2**-56 */
252  return one-x;
253  z = x*x;
254  r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
255  s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
256  y = r/s;
257  if(hx < 0x3fd00000) { /* x<1/4 */
258  return one-(x+x*y);
259  } else {
260  r = x*y;
261  r += (x-half);
262  return half - r ;
263  }
264  }
265  if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
266  s = fabs(x)-one;
267  P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
268  Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
269  if(hx>=0) {
270  z = one-erx; return z - P/Q;
271  } else {
272  z = erx+P/Q; return one+z;
273  }
274  }
275  if (ix < 0x403c0000) { /* |x|<28 */
276  x = fabs(x);
277  s = one/(x*x);
278  if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
279  R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
280  ra5+s*(ra6+s*ra7))))));
281  S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
282  sa5+s*(sa6+s*(sa7+s*sa8)))))));
283  } else { /* |x| >= 1/.35 ~ 2.857143 */
284  if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
285  R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
286  rb5+s*rb6)))));
287  S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
288  sb5+s*(sb6+s*sb7))))));
289  }
290  z = x;
291  SET_LOW_WORD(z,0);
292  r = exp(-z*z-0.5625) * exp((z-x)*(z+x)+R/S);
293  if(hx>0) return r/x; else return two-r/x;
294  } else {
295  if(hx>0) return tiny*tiny; else return two-tiny;
296  }
297 }
#define GET_HIGH_WORD(i, d)
Definition: math_private.h:269
#define exp(x)
Definition: math.h:176
double erf(double x)
Definition: s_erf.c:187
#define one
Definition: k_tan.c:68
uint32_t u_int32_t
Definition: types.h:10
#define fabs(x)
Definition: math.h:178
#define SET_LOW_WORD(d, v)
Definition: math_private.h:307
double erfc(double x)
Definition: s_erf.c:239
signed int int32_t
Definition: stdint.h:11
Q(color) Q(draw_string) Q(get_pixel) Q(set_pixel) Q(%Q(%Q() Q(*) Q(/) Q(< dictcomp >) Q(< genexpr >) Q(< lambda >) Q(< listcomp >) Q(< module >) Q(< setcomp >) Q(< stdin >) Q(< string >) Q(ArithmeticError) Q(AssertionError) Q(AttributeError) Q(BaseException) Q(BufferError) Q(EOFError) Q(Ellipsis) Q(Exception) Q(FileExistsError) Q(FileNotFoundError) Q(FloatingPointError) Q(GeneratorExit) Q(ImportError) Q(IndentationError) Q(IndexError) Q(KeyError) Q(KeyboardInterrupt) Q(LookupError) Q(MemoryError) Q(NameError) Q(NoneType) Q(NotImplementedError) Q(OSError) Q(OverflowError) Q(RuntimeError) Q(StopIteration) Q(SyntaxError) Q(SystemExit) Q(TypeError) Q(UnboundLocalError) Q(ValueError) Q(ZeroDivisionError) Q(\n) Q(_) Q(__add__) Q(__bool__) Q(__build_class__) Q(__call__) Q(__class__) Q(__contains__) Q(__delitem__) Q(__enter__) Q(__eq__) Q(__exit__) Q(__ge__) Q(__getattr__) Q(__getitem__) Q(__gt__) Q(__hash__) Q(__iadd__) Q(__import__) Q(__init__) Q(__isub__) Q(__iter__) Q(__le__) Q(__len__) Q(__locals__) Q(__lt__) Q(__main__) Q(__module__) Q(__name__) Q(__new__) Q(__next__) Q(__path__) Q(__qualname__) Q(__repl_print__) Q(__repr__) Q(__setitem__) Q(__str__) Q(__sub__) Q(__traceback__) Q(__brace_open__colon__hash_b_brace_close_) Q(_lt_dictcomp_gt_) Q(_lt_genexpr_gt_) Q(_lt_lambda_gt_) Q(_lt_listcomp_gt_) Q(_lt_module_gt_) Q(_lt_setcomp_gt_) Q(_lt_string_gt_) Q(_percent__hash_o) Q(_percent__hash_x) Q(_star_) Q(abs) Q(acos) Q(acosh) Q(all) Q(any) Q(append) Q(args) Q(asin) Q(asinh) Q(atan) Q(atan2) Q(atanh) Q(bin) Q(bool) Q(bound_method) Q(builtins) Q(bytecode) Q(bytes) Q(callable) Q(ceil) Q(chr) Q(classmethod) Q(clear) Q(close) Q(closure) Q(cmath) Q(complex) Q(const) Q(copy) Q(copysign) Q(cos) Q(cosh) Q(count) Q(default) Q(degrees) Q(dict) Q(dict_view) Q(dir) Q(divmod) Q(e) Q(end) Q(endswith) Q(erf) Q(erfc) Q(eval) Q(exec) Q(exp) Q(expm1) Q(extend) Q(fabs) Q(find) Q(float) Q(floor) Q(fmod) Q(format) Q(frexp) Q(from_bytes) Q(fromkeys) Q(function) Q(gamma) Q(generator) Q(get) Q(getattr) Q(globals) Q(hasattr) Q(hash) Q(heap_lock) Q(heap_unlock) Q(hex) Q(id) Q(imag) Q(index) Q(input) Q(insert) Q(int) Q(isalpha) Q(isdigit) Q(isfinite) Q(isinf) Q(isinstance) Q(islower) Q(isnan) Q(isspace) Q(issubclass) Q(isupper) Q(items) Q(iter) Q(iterator) Q(join) Q(kandinsky) Q(kbd_intr) Q(key) Q(keys) Q(ldexp) Q(len) Q(lgamma) Q(list) Q(little) Q(locals) Q(log) Q(log10) Q(log2) Q(lower) Q(lstrip) Q(map) Q(math) Q(max) Q(maximum recursion depth exceeded) Q(micropython) Q(min) Q(modf) Q(module) Q(next) Q(object) Q(oct) Q(open) Q(opt_level) Q(ord) Q(phase) Q(pi) Q(polar) Q(pop) Q(popitem) Q(pow) Q(print) Q(radians) Q(range) Q(real) Q(rect) Q(remove) Q(replace) Q(repr) Q(reverse) Q(rfind) Q(rindex) Q(round) Q(rsplit) Q(rstrip) Q(send) Q(sep) Q(setattr) Q(setdefault) Q(sin) Q(sinh) Q(slice) Q(sort) Q(sorted) Q(split) Q(sqrt) Q(start) Q(startswith) Q(staticmethod) Q(step) Q(stop) Q(str) Q(strip) Q(sum) Q(super) Q(tan) Q(tanh) Q(throw) Q(to_bytes) Q(trunc) Q(tuple) Q(type) Q(update) Q(upper) Q(utf-8) Q(value) Q(values) Q(zip) Q(
Definition: qstrdefs.in.h:9