Numworks Epsilon  1.4.1
Graphing Calculator Operating System
s_atan.c
Go to the documentation of this file.
1 /* @(#)s_atan.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* atan(x)
14  * Method
15  * 1. Reduce x to positive by atan(x) = -atan(-x).
16  * 2. According to the integer k=4t+0.25 chopped, t=x, the argument
17  * is further reduced to one of the following intervals and the
18  * arctangent of t is evaluated by the corresponding formula:
19  *
20  * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
21  * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
22  * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
23  * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
24  * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
25  *
26  * Constants:
27  * The hexadecimal values are the intended ones for the following
28  * constants. The decimal values may be used, provided that the
29  * compiler will convert from decimal to binary accurately enough
30  * to produce the hexadecimal values shown.
31  */
32 
33 #include <sys/cdefs.h>
34 #include <float.h>
35 #include <math.h>
36 
37 #include "math_private.h"
38 
39 static const double atanhi[] = {
40  4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
41  7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
42  9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
43  1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
44 };
45 
46 static const double atanlo[] = {
47  2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
48  3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
49  1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
50  6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
51 };
52 
53 static const double aT[] = {
54  3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
55  -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
56  1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
57  -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
58  9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
59  -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
60  6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
61  -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
62  4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
63  -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
64  1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
65 };
66 
67 static const double
68 one = 1.0,
69 huge = 1.0e300;
70 
71 double
72 atan(double x)
73 {
74  double w,s1,s2,z;
75  int32_t ix,hx,id;
76 
77  GET_HIGH_WORD(hx,x);
78  ix = hx&0x7fffffff;
79  if(ix>=0x44100000) { /* if |x| >= 2^66 */
80  u_int32_t low;
81  GET_LOW_WORD(low,x);
82  if(ix>0x7ff00000||
83  (ix==0x7ff00000&&(low!=0)))
84  return x+x; /* NaN */
85  if(hx>0) return atanhi[3]+atanlo[3];
86  else return -atanhi[3]-atanlo[3];
87  } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
88  if (ix < 0x3e200000) { /* |x| < 2^-29 */
89  if(huge+x>one) return x; /* raise inexact */
90  }
91  id = -1;
92  } else {
93  x = fabs(x);
94  if (ix < 0x3ff30000) { /* |x| < 1.1875 */
95  if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
96  id = 0; x = (2.0*x-one)/(2.0+x);
97  } else { /* 11/16<=|x|< 19/16 */
98  id = 1; x = (x-one)/(x+one);
99  }
100  } else {
101  if (ix < 0x40038000) { /* |x| < 2.4375 */
102  id = 2; x = (x-1.5)/(one+1.5*x);
103  } else { /* 2.4375 <= |x| < 2^66 */
104  id = 3; x = -1.0/x;
105  }
106  }}
107  /* end of argument reduction */
108  z = x*x;
109  w = z*z;
110  /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
111  s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
112  s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
113  if (id<0) return x - x*(s1+s2);
114  else {
115  z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
116  return (hx<0)? -z:z;
117  }
118 }
119 
120 #if LDBL_MANT_DIG == 53
121 #ifdef __weak_alias
122 __weak_alias(atanl, atan);
123 #endif /* __weak_alias */
124 #endif /* LDBL_MANT_DIG == 53 */
#define GET_HIGH_WORD(i, d)
Definition: math_private.h:269
#define one
Definition: k_tan.c:68
uint32_t u_int32_t
Definition: types.h:10
#define fabs(x)
Definition: math.h:178
#define GET_LOW_WORD(i, d)
Definition: math_private.h:278
double atan(double x)
Definition: s_atan.c:72
signed int int32_t
Definition: stdint.h:11