Numworks Epsilon  1.4.1
Graphing Calculator Operating System
k_cos.c
Go to the documentation of this file.
1 /* @(#)k_cos.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /*
14  * __kernel_cos( x, y )
15  * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
16  * Input x is assumed to be bounded by ~pi/4 in magnitude.
17  * Input y is the tail of x.
18  *
19  * Algorithm
20  * 1. Since cos(-x) = cos(x), we need only to consider positive x.
21  * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
22  * 3. cos(x) is approximated by a polynomial of degree 14 on
23  * [0,pi/4]
24  * 4 14
25  * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
26  * where the Remes error is
27  *
28  * | 2 4 6 8 10 12 14 | -58
29  * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
30  * | |
31  *
32  * 4 6 8 10 12 14
33  * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
34  * cos(x) = 1 - x*x/2 + r
35  * since cos(x+y) ~ cos(x) - sin(x)*y
36  * ~ cos(x) - x*y,
37  * a correction term is necessary in cos(x) and hence
38  * cos(x+y) = 1 - (x*x/2 - (r - x*y))
39  * For better accuracy when x > 0.3, let qx = |x|/4 with
40  * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
41  * Then
42  * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
43  * Note that 1-qx and (x*x/2-qx) is EXACT here, and the
44  * magnitude of the latter is at least a quarter of x*x/2,
45  * thus, reducing the rounding error in the subtraction.
46  */
47 
48 #include "math.h"
49 #include "math_private.h"
50 
51 static const double
52 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
53 C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
54 C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
55 C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
56 C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
57 C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
58 C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
59 
60 double
61 __kernel_cos(double x, double y)
62 {
63  double a,hz,z,r,qx;
64  int32_t ix;
65  GET_HIGH_WORD(ix,x);
66  ix &= 0x7fffffff; /* ix = |x|'s high word*/
67  if(ix<0x3e400000) { /* if x < 2**27 */
68  if(((int)x)==0) return one; /* generate inexact */
69  }
70  z = x*x;
71  r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
72  if(ix < 0x3FD33333) /* if |x| < 0.3 */
73  return one - (0.5*z - (z*r - x*y));
74  else {
75  if(ix > 0x3fe90000) { /* x > 0.78125 */
76  qx = 0.28125;
77  } else {
78  INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */
79  }
80  hz = 0.5*z-qx;
81  a = one-qx;
82  return a - (hz - (z*r-x*y));
83  }
84 }
#define GET_HIGH_WORD(i, d)
Definition: math_private.h:269
#define one
Definition: k_tan.c:68
double a
Definition: math_private.h:405
#define INSERT_WORDS(d, ix0, ix1)
Definition: math_private.h:287
double __kernel_cos(double x, double y)
Definition: k_cos.c:61
signed int int32_t
Definition: stdint.h:11