Numworks Epsilon  1.4.1
Graphing Calculator Operating System
e_lgammaf_r.c
Go to the documentation of this file.
1 /* e_lgammaf_r.c -- float version of e_lgamma_r.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include "math.h"
17 #include "math_private.h"
18 
19 static const float
20 two23= 8.3886080000e+06, /* 0x4b000000 */
21 half= 5.0000000000e-01, /* 0x3f000000 */
22 one = 1.0000000000e+00, /* 0x3f800000 */
23 pi = 3.1415927410e+00, /* 0x40490fdb */
24 a0 = 7.7215664089e-02, /* 0x3d9e233f */
25 a1 = 3.2246702909e-01, /* 0x3ea51a66 */
26 a2 = 6.7352302372e-02, /* 0x3d89f001 */
27 a3 = 2.0580807701e-02, /* 0x3ca89915 */
28 a4 = 7.3855509982e-03, /* 0x3bf2027e */
29 a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */
30 a6 = 1.1927076848e-03, /* 0x3a9c54a1 */
31 a7 = 5.1006977446e-04, /* 0x3a05b634 */
32 a8 = 2.2086278477e-04, /* 0x39679767 */
33 a9 = 1.0801156895e-04, /* 0x38e28445 */
34 a10 = 2.5214456400e-05, /* 0x37d383a2 */
35 a11 = 4.4864096708e-05, /* 0x383c2c75 */
36 tc = 1.4616321325e+00, /* 0x3fbb16c3 */
37 tf = -1.2148628384e-01, /* 0xbdf8cdcd */
38 /* tt = -(tail of tf) */
39 tt = 6.6971006518e-09, /* 0x31e61c52 */
40 t0 = 4.8383611441e-01, /* 0x3ef7b95e */
41 t1 = -1.4758771658e-01, /* 0xbe17213c */
42 t2 = 6.4624942839e-02, /* 0x3d845a15 */
43 t3 = -3.2788541168e-02, /* 0xbd064d47 */
44 t4 = 1.7970675603e-02, /* 0x3c93373d */
45 t5 = -1.0314224288e-02, /* 0xbc28fcfe */
46 t6 = 6.1005386524e-03, /* 0x3bc7e707 */
47 t7 = -3.6845202558e-03, /* 0xbb7177fe */
48 t8 = 2.2596477065e-03, /* 0x3b141699 */
49 t9 = -1.4034647029e-03, /* 0xbab7f476 */
50 t10 = 8.8108185446e-04, /* 0x3a66f867 */
51 t11 = -5.3859531181e-04, /* 0xba0d3085 */
52 t12 = 3.1563205994e-04, /* 0x39a57b6b */
53 t13 = -3.1275415677e-04, /* 0xb9a3f927 */
54 t14 = 3.3552918467e-04, /* 0x39afe9f7 */
55 u0 = -7.7215664089e-02, /* 0xbd9e233f */
56 u1 = 6.3282704353e-01, /* 0x3f2200f4 */
57 u2 = 1.4549225569e+00, /* 0x3fba3ae7 */
58 u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */
59 u4 = 2.2896373272e-01, /* 0x3e6a7578 */
60 u5 = 1.3381091878e-02, /* 0x3c5b3c5e */
61 v1 = 2.4559779167e+00, /* 0x401d2ebe */
62 v2 = 2.1284897327e+00, /* 0x4008392d */
63 v3 = 7.6928514242e-01, /* 0x3f44efdf */
64 v4 = 1.0422264785e-01, /* 0x3dd572af */
65 v5 = 3.2170924824e-03, /* 0x3b52d5db */
66 s0 = -7.7215664089e-02, /* 0xbd9e233f */
67 s1 = 2.1498242021e-01, /* 0x3e5c245a */
68 s2 = 3.2577878237e-01, /* 0x3ea6cc7a */
69 s3 = 1.4635047317e-01, /* 0x3e15dce6 */
70 s4 = 2.6642270386e-02, /* 0x3cda40e4 */
71 s5 = 1.8402845599e-03, /* 0x3af135b4 */
72 s6 = 3.1947532989e-05, /* 0x3805ff67 */
73 r1 = 1.3920053244e+00, /* 0x3fb22d3b */
74 r2 = 7.2193557024e-01, /* 0x3f38d0c5 */
75 r3 = 1.7193385959e-01, /* 0x3e300f6e */
76 r4 = 1.8645919859e-02, /* 0x3c98bf54 */
77 r5 = 7.7794247773e-04, /* 0x3a4beed6 */
78 r6 = 7.3266842264e-06, /* 0x36f5d7bd */
79 w0 = 4.1893854737e-01, /* 0x3ed67f1d */
80 w1 = 8.3333335817e-02, /* 0x3daaaaab */
81 w2 = -2.7777778450e-03, /* 0xbb360b61 */
82 w3 = 7.9365057172e-04, /* 0x3a500cfd */
83 w4 = -5.9518753551e-04, /* 0xba1c065c */
84 w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */
85 w6 = -1.6309292987e-03; /* 0xbad5c4e8 */
86 
87 static const float zero= 0.0000000000e+00;
88 
89 static float
90 sin_pif(float x)
91 {
92  float y,z;
93  int n,ix;
94 
95  GET_FLOAT_WORD(ix,x);
96  ix &= 0x7fffffff;
97 
98  if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0);
99  y = -x; /* x is assume negative */
100 
101  /*
102  * argument reduction, make sure inexact flag not raised if input
103  * is an integer
104  */
105  z = floorf(y);
106  if(z!=y) { /* inexact anyway */
107  y *= (float)0.5;
108  y = (float)2.0*(y - floorf(y)); /* y = |x| mod 2.0 */
109  n = (int) (y*(float)4.0);
110  } else {
111  if(ix>=0x4b800000) {
112  y = zero; n = 0; /* y must be even */
113  } else {
114  if(ix<0x4b000000) z = y+two23; /* exact */
115  GET_FLOAT_WORD(n,z);
116  n &= 1;
117  y = n;
118  n<<= 2;
119  }
120  }
121  switch (n) {
122  case 0: y = __kernel_sinf(pi*y,zero,0); break;
123  case 1:
124  case 2: y = __kernel_cosf(pi*((float)0.5-y),zero); break;
125  case 3:
126  case 4: y = __kernel_sinf(pi*(one-y),zero,0); break;
127  case 5:
128  case 6: y = -__kernel_cosf(pi*(y-(float)1.5),zero); break;
129  default: y = __kernel_sinf(pi*(y-(float)2.0),zero,0); break;
130  }
131  return -y;
132 }
133 
134 
135 float
136 lgammaf_r(float x, int *signgamp)
137 {
138  float t,y,z,nadj,p,p1,p2,p3,q,r,w;
139  int i,hx,ix;
140 
141  GET_FLOAT_WORD(hx,x);
142 
143  /* purge off +-inf, NaN, +-0, and negative arguments */
144  *signgamp = 1;
145  ix = hx&0x7fffffff;
146  if(ix>=0x7f800000) return x*x;
147  if(ix==0) return one/zero;
148  if(ix<0x1c800000) { /* |x|<2**-70, return -log(|x|) */
149  if(hx<0) {
150  *signgamp = -1;
151  return - logf(-x);
152  } else return - logf(x);
153  }
154  if(hx<0) {
155  if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */
156  return one/zero;
157  t = sin_pif(x);
158  if(t==zero) return one/zero; /* -integer */
159  nadj = logf(pi/fabsf(t*x));
160  if(t<zero) *signgamp = -1;
161  x = -x;
162  }
163 
164  /* purge off 1 and 2 */
165  if (ix==0x3f800000||ix==0x40000000) r = 0;
166  /* for x < 2.0 */
167  else if(ix<0x40000000) {
168  if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */
169  r = - logf(x);
170  if(ix>=0x3f3b4a20) {y = one-x; i= 0;}
171  else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;}
172  else {y = x; i=2;}
173  } else {
174  r = zero;
175  if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */
176  else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */
177  else {y=x-one;i=2;}
178  }
179  switch(i) {
180  case 0:
181  z = y*y;
182  p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
183  p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
184  p = y*p1+p2;
185  r += (p-(float)0.5*y); break;
186  case 1:
187  z = y*y;
188  w = z*y;
189  p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
190  p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
191  p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
192  p = z*p1-(tt-w*(p2+y*p3));
193  r += (tf + p); break;
194  case 2:
195  p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
196  p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
197  r += (-(float)0.5*y + p1/p2);
198  }
199  }
200  else if(ix<0x41000000) { /* x < 8.0 */
201  i = (int)x;
202  t = zero;
203  y = x-(float)i;
204  p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
205  q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
206  r = half*y+p/q;
207  z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
208  switch(i) {
209  case 7: z *= (y+(float)6.0); /* FALLTHRU */
210  case 6: z *= (y+(float)5.0); /* FALLTHRU */
211  case 5: z *= (y+(float)4.0); /* FALLTHRU */
212  case 4: z *= (y+(float)3.0); /* FALLTHRU */
213  case 3: z *= (y+(float)2.0); /* FALLTHRU */
214  r += logf(z); break;
215  }
216  /* 8.0 <= x < 2**58 */
217  } else if (ix < 0x5c800000) {
218  t = logf(x);
219  z = one/x;
220  y = z*z;
221  w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
222  r = (x-half)*(t-one)+w;
223  } else
224  /* 2**58 <= x <= inf */
225  r = x*(logf(x)-one);
226  if(hx<0) r = nadj - r;
227  return r;
228 }
#define floorf(x)
Definition: math.h:142
float __kernel_cosf(float x, float y)
Definition: k_cosf.c:29
#define fabsf(x)
Definition: math.h:141
#define logf(x)
Definition: math.h:150
#define one
Definition: k_tan.c:68
float __kernel_sinf(float x, float y, int iy)
Definition: k_sinf.c:29
#define GET_FLOAT_WORD(i, d)
Definition: math_private.h:326
float lgammaf_r(float x, int *signgamp)
Definition: e_lgammaf_r.c:136