Numworks Epsilon  1.4.1
Graphing Calculator Operating System
e_fmod.c
Go to the documentation of this file.
1 /* @(#)e_fmod.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /*
14  * fmod(x,y)
15  * Return x mod y in exact arithmetic
16  * Method: shift and subtract
17  */
18 
19 #include "math.h"
20 #include "math_private.h"
21 
22 static const double one = 1.0, Zero[] = {0.0, -0.0,};
23 
24 double
25 fmod(double x, double y)
26 {
27  int32_t n,hx,hy,hz,ix,iy,sx,i;
28  u_int32_t lx,ly,lz;
29 
30  EXTRACT_WORDS(hx,lx,x);
31  EXTRACT_WORDS(hy,ly,y);
32  sx = hx&0x80000000; /* sign of x */
33  hx ^=sx; /* |x| */
34  hy &= 0x7fffffff; /* |y| */
35 
36  /* purge off exception values */
37  if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */
38  ((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */
39  return (x*y)/(x*y);
40  if(hx<=hy) {
41  if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */
42  if(lx==ly)
43  return Zero[(u_int32_t)sx>>31]; /* |x|=|y| return x*0*/
44  }
45 
46  /* determine ix = ilogb(x) */
47  if(hx<0x00100000) { /* subnormal x */
48  if(hx==0) {
49  for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
50  } else {
51  for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
52  }
53  } else ix = (hx>>20)-1023;
54 
55  /* determine iy = ilogb(y) */
56  if(hy<0x00100000) { /* subnormal y */
57  if(hy==0) {
58  for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
59  } else {
60  for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
61  }
62  } else iy = (hy>>20)-1023;
63 
64  /* set up {hx,lx}, {hy,ly} and align y to x */
65  if(ix >= -1022)
66  hx = 0x00100000|(0x000fffff&hx);
67  else { /* subnormal x, shift x to normal */
68  n = -1022-ix;
69  if(n<=31) {
70  hx = (hx<<n)|(lx>>(32-n));
71  lx <<= n;
72  } else {
73  hx = lx<<(n-32);
74  lx = 0;
75  }
76  }
77  if(iy >= -1022)
78  hy = 0x00100000|(0x000fffff&hy);
79  else { /* subnormal y, shift y to normal */
80  n = -1022-iy;
81  if(n<=31) {
82  hy = (hy<<n)|(ly>>(32-n));
83  ly <<= n;
84  } else {
85  hy = ly<<(n-32);
86  ly = 0;
87  }
88  }
89 
90  /* fix point fmod */
91  n = ix - iy;
92  while(n--) {
93  hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
94  if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
95  else {
96  if((hz|lz)==0) /* return sign(x)*0 */
97  return Zero[(u_int32_t)sx>>31];
98  hx = hz+hz+(lz>>31); lx = lz+lz;
99  }
100  }
101  hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
102  if(hz>=0) {hx=hz;lx=lz;}
103 
104  /* convert back to floating value and restore the sign */
105  if((hx|lx)==0) /* return sign(x)*0 */
106  return Zero[(u_int32_t)sx>>31];
107  while(hx<0x00100000) { /* normalize x */
108  hx = hx+hx+(lx>>31); lx = lx+lx;
109  iy -= 1;
110  }
111  if(iy>= -1022) { /* normalize output */
112  hx = ((hx-0x00100000)|((iy+1023)<<20));
113  INSERT_WORDS(x,hx|sx,lx);
114  } else { /* subnormal output */
115  n = -1022 - iy;
116  if(n<=20) {
117  lx = (lx>>n)|((u_int32_t)hx<<(32-n));
118  hx >>= n;
119  } else if (n<=31) {
120  lx = (hx<<(32-n))|(lx>>n); hx = sx;
121  } else {
122  lx = hx>>(n-32); hx = sx;
123  }
124  INSERT_WORDS(x,hx|sx,lx);
125  x *= one; /* create necessary signal */
126  }
127  return x; /* exact output */
128 }
#define one
Definition: k_tan.c:68
uint32_t u_int32_t
Definition: types.h:10
constexpr Event Zero
Definition: events.h:110
#define EXTRACT_WORDS(ix0, ix1, d)
Definition: math_private.h:259
#define INSERT_WORDS(d, ix0, ix1)
Definition: math_private.h:287
double fmod(double x, double y)
Definition: e_fmod.c:25
signed int int32_t
Definition: stdint.h:11