Numworks Epsilon  1.4.1
Graphing Calculator Operating System
e_asin.c
Go to the documentation of this file.
1 /* @(#)e_asin.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* asin(x)
14  * Method :
15  * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
16  * we approximate asin(x) on [0,0.5] by
17  * asin(x) = x + x*x^2*R(x^2)
18  * where
19  * R(x^2) is a rational approximation of (asin(x)-x)/x^3
20  * and its Remes error is bounded by
21  * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
22  *
23  * For x in [0.5,1]
24  * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
25  * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
26  * then for x>0.98
27  * asin(x) = pi/2 - 2*(s+s*z*R(z))
28  * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
29  * For x<=0.98, let pio4_hi = pio2_hi/2, then
30  * f = hi part of s;
31  * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
32  * and
33  * asin(x) = pi/2 - 2*(s+s*z*R(z))
34  * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
35  * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
36  *
37  * Special cases:
38  * if x is NaN, return x itself;
39  * if |x|>1, return NaN with invalid signal.
40  *
41  */
42 
43 #include <sys/cdefs.h>
44 #include <float.h>
45 #include <math.h>
46 
47 #include "math_private.h"
48 
49 static const double
50 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
51 huge = 1.000e+300,
52 pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
53 pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
54 pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
55  /* coefficient for R(x^2) */
56 pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
57 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
58 pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
59 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
60 pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
61 pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
62 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
63 qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
64 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
65 qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
66 
67 double
68 asin(double x)
69 {
70  double t,w,p,q,c,r,s;
71  int32_t hx,ix;
72  GET_HIGH_WORD(hx,x);
73  ix = hx&0x7fffffff;
74  if(ix>= 0x3ff00000) { /* |x|>= 1 */
75  u_int32_t lx;
76  GET_LOW_WORD(lx,x);
77  if(((ix-0x3ff00000)|lx)==0)
78  /* asin(1)=+-pi/2 with inexact */
79  return x*pio2_hi+x*pio2_lo;
80  return (x-x)/(x-x); /* asin(|x|>1) is NaN */
81  } else if (ix<0x3fe00000) { /* |x|<0.5 */
82  if(ix<0x3e400000) { /* if |x| < 2**-27 */
83  if(huge+x>one) return x;/* return x with inexact if x!=0*/
84  } else
85  t = x*x;
86  p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
87  q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
88  w = p/q;
89  return x+x*w;
90  }
91  /* 1> |x|>= 0.5 */
92  w = one-fabs(x);
93  t = w*0.5;
94  p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
95  q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
96  s = sqrt(t);
97  if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
98  w = p/q;
99  t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
100  } else {
101  w = s;
102  SET_LOW_WORD(w,0);
103  c = (t-w*w)/(s+w);
104  r = p/q;
105  p = 2.0*s*r-(pio2_lo-2.0*c);
106  q = pio4_hi-2.0*w;
107  t = pio4_hi-(p-q);
108  }
109  if(hx>0) return t; else return -t;
110 }
111 
112 #if LDBL_MANT_DIG == 53
113 #ifdef __weak_alias
114 __weak_alias(asinl, asin);
115 #endif /* __weak_alias */
116 #endif /* LDBL_MANT_DIG == 53 */
#define GET_HIGH_WORD(i, d)
Definition: math_private.h:269
#define one
Definition: k_tan.c:68
double asin(double x)
Definition: e_asin.c:68
uint32_t u_int32_t
Definition: types.h:10
#define fabs(x)
Definition: math.h:178
c(generic_all_nodes)
#define SET_LOW_WORD(d, v)
Definition: math_private.h:307
#define GET_LOW_WORD(i, d)
Definition: math_private.h:278
signed int int32_t
Definition: stdint.h:11
#define sqrt(x)
Definition: math.h:196