Numworks Epsilon  1.4.1
Graphing Calculator Operating System
s_log1p.c
Go to the documentation of this file.
1 /* @(#)s_log1p.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* double log1p(double x)
14  *
15  * Method :
16  * 1. Argument Reduction: find k and f such that
17  * 1+x = 2^k * (1+f),
18  * where sqrt(2)/2 < 1+f < sqrt(2) .
19  *
20  * Note. If k=0, then f=x is exact. However, if k!=0, then f
21  * may not be representable exactly. In that case, a correction
22  * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
23  * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
24  * and add back the correction term c/u.
25  * (Note: when x > 2**53, one can simply return log(x))
26  *
27  * 2. Approximation of log1p(f).
28  * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
29  * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
30  * = 2s + s*R
31  * We use a special Remes algorithm on [0,0.1716] to generate
32  * a polynomial of degree 14 to approximate R The maximum error
33  * of this polynomial approximation is bounded by 2**-58.45. In
34  * other words,
35  * 2 4 6 8 10 12 14
36  * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
37  * (the values of Lp1 to Lp7 are listed in the program)
38  * and
39  * | 2 14 | -58.45
40  * | Lp1*s +...+Lp7*s - R(z) | <= 2
41  * | |
42  * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
43  * In order to guarantee error in log below 1ulp, we compute log
44  * by
45  * log1p(f) = f - (hfsq - s*(hfsq+R)).
46  *
47  * 3. Finally, log1p(x) = k*ln2 + log1p(f).
48  * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
49  * Here ln2 is split into two floating point number:
50  * ln2_hi + ln2_lo,
51  * where n*ln2_hi is always exact for |n| < 2000.
52  *
53  * Special cases:
54  * log1p(x) is NaN with signal if x < -1 (including -INF) ;
55  * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
56  * log1p(NaN) is that NaN with no signal.
57  *
58  * Accuracy:
59  * according to an error analysis, the error is always less than
60  * 1 ulp (unit in the last place).
61  *
62  * Constants:
63  * The hexadecimal values are the intended ones for the following
64  * constants. The decimal values may be used, provided that the
65  * compiler will convert from decimal to binary accurately enough
66  * to produce the hexadecimal values shown.
67  *
68  * Note: Assuming log() return accurate answer, the following
69  * algorithm can be used to compute log1p(x) to within a few ULP:
70  *
71  * u = 1+x;
72  * if(u==1.0) return x ; else
73  * return log(u)*(x/(u-1.0));
74  *
75  * See HP-15C Advanced Functions Handbook, p.193.
76  */
77 
78 #include "math.h"
79 #include "math_private.h"
80 
81 static const double
82 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
83 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
84 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
85 Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
86 Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
87 Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
88 Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
89 Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
90 Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
91 Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
92 
93 static const double zero = 0.0;
94 
95 double
96 log1p(double x)
97 {
98  double hfsq,f,c,s,z,R,u;
99  int32_t k,hx,hu,ax;
100 
101  GET_HIGH_WORD(hx,x);
102  ax = hx&0x7fffffff;
103 
104  k = 1;
105  if (hx < 0x3FDA827A) { /* x < 0.41422 */
106  if(ax>=0x3ff00000) { /* x <= -1.0 */
107  if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
108  else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
109  }
110  if(ax<0x3e200000) { /* |x| < 2**-29 */
111  if(two54+x>zero /* raise inexact */
112  &&ax<0x3c900000) /* |x| < 2**-54 */
113  return x;
114  else
115  return x - x*x*0.5;
116  }
117  if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
118  k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
119  }
120  if (hx >= 0x7ff00000) return x+x;
121  if(k!=0) {
122  if(hx<0x43400000) {
123  u = 1.0+x;
124  GET_HIGH_WORD(hu,u);
125  k = (hu>>20)-1023;
126  c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
127  c /= u;
128  } else {
129  u = x;
130  GET_HIGH_WORD(hu,u);
131  k = (hu>>20)-1023;
132  c = 0;
133  }
134  hu &= 0x000fffff;
135  if(hu<0x6a09e) {
136  SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
137  } else {
138  k += 1;
139  SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
140  hu = (0x00100000-hu)>>2;
141  }
142  f = u-1.0;
143  }
144  hfsq=0.5*f*f;
145  if(hu==0) { /* |f| < 2**-20 */
146  if(f==zero) if(k==0) return zero;
147  else {c += k*ln2_lo; return k*ln2_hi+c;}
148  R = hfsq*(1.0-0.66666666666666666*f);
149  if(k==0) return f-R; else
150  return k*ln2_hi-((R-(k*ln2_lo+c))-f);
151  }
152  s = f/(2.0+f);
153  z = s*s;
154  R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
155  if(k==0) return f-(hfsq-s*(hfsq+R)); else
156  return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
157 }
#define GET_HIGH_WORD(i, d)
Definition: math_private.h:269
#define SET_HIGH_WORD(d, v)
Definition: math_private.h:297
double log1p(double x)
Definition: s_log1p.c:96
c(generic_all_nodes)
signed int int32_t
Definition: stdint.h:11