Numworks Epsilon
1.4.1
Graphing Calculator Operating System
|
Namespaces | |
Helpers | |
Classes | |
class | App |
class | ConsoleController |
class | ConsoleEditCell |
class | ConsoleLine |
class | ConsoleLineCell |
class | ConsoleStore |
class | EditorController |
class | MenuController |
class | PythonToolbox |
class | SandboxController |
class | Script |
class | ScriptNode |
class | ScriptNodeCell |
class | ScriptParameterController |
class | ScriptStore |
class | ScriptTemplate |
class | VariableBoxController |
Functions | |
constexpr ScriptTemplate | emptyScriptTemplate (".py", R"(from math import * )") |
constexpr ScriptTemplate | factorialScriptTemplate ("factorial.py", R"(def factorial(n): if n == 0: return 1 else: return n * factorial(n-1))") |
constexpr ScriptTemplate | fibonacciScriptTemplate ("fibonacci.py", R"(def fibo(n): a=0 b=1 for i in range(1,n+1): c=a+b a=b b=c return a def fibo2(n): if n==0: return 0 elif n==1 or n==2: return 1 return fibo2(n-1)+fibo2(n-2))") |
constexpr ScriptTemplate | mandelbrotScriptTemplate ("mandelbrot.py", R"(# This script draws a Mandelbrot fractal set # N_iteration: degree of precision import kandinsky def mandelbrot(N_iteration): for x in range(320): for y in range(222): # Compute the mandelbrot sequence for the point c = (c_r, c_i) with start value z = (z_r, z_i) z = complex(0,0) # Rescale to fit the drawing screen 320x222 c = complex(3.5*x/319-2.5, -2.5*y/221+1.25) i = 0 while (i < N_iteration) and abs(z) < 2: i = i + 1 z = z*z+c # Choose the color of the dot from the Mandelbrot sequence rgb = int(255*i/N_iteration) col = kandinsky.color(int(rgb),int(rgb*0.75),int(rgb*0.25)) # Draw a pixel colored in 'col' at position (x,y) kandinsky.set_pixel(x,y,col))") |
constexpr ScriptTemplate | polynomialScriptTemplate ("polynomial.py", R"(from math import * # roots(a,b,c) computes the solutions of the equation a*x**2+b*x+c=0 def roots(a,b,c): delta = b*b-4*a*c if delta == 0: return -b/(2*a) elif delta > 0: x_1 = (-b-sqrt(delta))/(2*a) x_2 = (-b+sqrt(delta))/(2*a) return x_1, x_2 else: return None)") |
Variables | |
const ToolboxMessageTree | forLoopChildren [forLoopChildrenCount] |
const ToolboxMessageTree | ifStatementChildren [ifStatementChildrenCount] |
const ToolboxMessageTree | whileLoopChildren [whileLoopChildrenCount] |
const ToolboxMessageTree | conditionsChildren [conditionsChildrenCount] |
const ToolboxMessageTree | loopsAndTestsChildren [loopsAndTestsChildrenCount] |
const ToolboxMessageTree | MathModuleChildren [MathModuleChildrenCount] |
const ToolboxMessageTree | KandinskyModuleChildren [KandinskyModuleChildrenCount] |
const ToolboxMessageTree | RandomModuleChildren [RandomModuleChildrenCount] |
const ToolboxMessageTree | CMathModuleChildren [CMathModuleChildrenCount] |
const ToolboxMessageTree | modulesChildren [modulesChildrenCount] |
const ToolboxMessageTree | catalogChildren [catalogChildrenCount] |
const ToolboxMessageTree | functionsChildren [functionsChildrenCount] |
const ToolboxMessageTree | menu [menuChildrenCount] |
const ToolboxMessageTree | toolboxModel = ToolboxMessageTree(I18n::Message::Toolbox, I18n::Message::Default, I18n::Message::Default, menu, menuChildrenCount) |
constexpr ScriptTemplate Code::emptyScriptTemplate | ( | ".py" | , |
R"(from math import *)" | |||
) |
constexpr ScriptTemplate Code::factorialScriptTemplate | ( | "factorial.py" | , |
R"(def factorial(n): if n == 0: return 1 else: return n * factorial(n-1))" | |||
) |
constexpr ScriptTemplate Code::fibonacciScriptTemplate | ( | "fibonacci.py" | , |
R"(def fibo(n): a=0 b=1 for i in range(1,n+1): c=a+b a=b b=c return adef fibo2(n): if n==0: return 0 elif n==1 or n==2: return 1 return fibo2(n-1)+fibo2(n-2))" | |||
) |
constexpr ScriptTemplate Code::mandelbrotScriptTemplate | ( | "mandelbrot.py" | , |
R"(# This script draws a Mandelbrot fractal set# N_iteration: degree of precisionimport kandinskydef mandelbrot(N_iteration): for x in range(320): for y in range(222):# Compute the mandelbrot sequence for the point c = (c_r, c_i) with start value z = (z_r, z_i) z = complex(0,0)# Rescale to fit the drawing screen 320x222 c = complex(3.5*x/319-2.5, -2.5*y/221+1.25) i = 0 while (i < N_iteration) and abs(z) < 2: i = i + 1 z = z*z+c# Choose the color of the dot from the Mandelbrot sequence rgb = int(255*i/N_iteration) col = kandinsky.color(int(rgb),int(rgb*0.75),int(rgb*0.25))# Draw a pixel colored in 'col' at position (x,y) kandinsky.set_pixel(x,y,col))" | |||
) |
constexpr ScriptTemplate Code::polynomialScriptTemplate | ( | "polynomial.py" | , |
R"(from math import *# roots(a,b,c) computes the solutions of the equation a*x**2+b*x+c=0def roots(a,b,c): delta = b*b-4*a*c if delta == 0: return -b/(2*a) elif delta > 0: x_1 = (-b-sqrt(delta))/(2*a) x_2 = (-b+sqrt(delta))/(2*a) return x_1, x_2 else: return None)" | |||
) |
const ToolboxMessageTree Code::catalogChildren[catalogChildrenCount] |
Definition at line 147 of file python_toolbox.cpp.
const ToolboxMessageTree Code::CMathModuleChildren[CMathModuleChildrenCount] |
Definition at line 126 of file python_toolbox.cpp.
const ToolboxMessageTree Code::conditionsChildren[conditionsChildrenCount] |
Definition at line 42 of file python_toolbox.cpp.
const ToolboxMessageTree Code::forLoopChildren[forLoopChildrenCount] |
Definition at line 26 of file python_toolbox.cpp.
const ToolboxMessageTree Code::functionsChildren[functionsChildrenCount] |
Definition at line 244 of file python_toolbox.cpp.
const ToolboxMessageTree Code::ifStatementChildren[ifStatementChildrenCount] |
Definition at line 32 of file python_toolbox.cpp.
const ToolboxMessageTree Code::KandinskyModuleChildren[KandinskyModuleChildrenCount] |
Definition at line 104 of file python_toolbox.cpp.
const ToolboxMessageTree Code::loopsAndTestsChildren[loopsAndTestsChildrenCount] |
Definition at line 53 of file python_toolbox.cpp.
const ToolboxMessageTree Code::MathModuleChildren[MathModuleChildrenCount] |
Definition at line 59 of file python_toolbox.cpp.
const ToolboxMessageTree Code::menu[menuChildrenCount] |
Definition at line 248 of file python_toolbox.cpp.
const ToolboxMessageTree Code::modulesChildren[modulesChildrenCount] |
Definition at line 141 of file python_toolbox.cpp.
const ToolboxMessageTree Code::RandomModuleChildren[RandomModuleChildrenCount] |
Definition at line 113 of file python_toolbox.cpp.
const ToolboxMessageTree Code::toolboxModel = ToolboxMessageTree(I18n::Message::Toolbox, I18n::Message::Default, I18n::Message::Default, menu, menuChildrenCount) |
Definition at line 254 of file python_toolbox.cpp.
const ToolboxMessageTree Code::whileLoopChildren[whileLoopChildrenCount] |
Definition at line 39 of file python_toolbox.cpp.