Numworks Epsilon  1.4.1
Graphing Calculator Operating System
mem5.c
Go to the documentation of this file.
1 /*
2 ** 2007 October 14
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement a memory
13 ** allocation subsystem for use by SQLite.
14 **
15 ** This version of the memory allocation subsystem omits all
16 ** use of malloc(). The application gives SQLite a block of memory
17 ** before calling sqlite3_initialize() from which allocations
18 ** are made and returned by the xMalloc() and xRealloc()
19 ** implementations. Once sqlite3_initialize() has been called,
20 ** the amount of memory available to SQLite is fixed and cannot
21 ** be changed.
22 **
23 ** This version of the memory allocation subsystem is included
24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
25 **
26 ** This memory allocator uses the following algorithm:
27 **
28 ** 1. All memory allocations sizes are rounded up to a power of 2.
29 **
30 ** 2. If two adjacent free blocks are the halves of a larger block,
31 ** then the two blocks are coalesced into the single larger block.
32 **
33 ** 3. New memory is allocated from the first available free block.
34 **
35 ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
36 ** Concerning Dynamic Storage Allocation". Journal of the Association for
37 ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
38 **
39 ** Let n be the size of the largest allocation divided by the minimum
40 ** allocation size (after rounding all sizes up to a power of 2.) Let M
41 ** be the maximum amount of memory ever outstanding at one time. Let
42 ** N be the total amount of memory available for allocation. Robson
43 ** proved that this memory allocator will never breakdown due to
44 ** fragmentation as long as the following constraint holds:
45 **
46 ** N >= M*(1 + log2(n)/2) - n + 1
47 **
48 ** The sqlite3_status() logic tracks the maximum values of n and M so
49 ** that an application can, at any time, verify this constraint.
50 */
51 #include "sqliteInt.h"
52 
53 /*
54 ** This version of the memory allocator is used only when
55 ** SQLITE_ENABLE_MEMSYS5 is defined.
56 */
57 #ifdef SQLITE_ENABLE_MEMSYS5
58 
59 /*
60 ** A minimum allocation is an instance of the following structure.
61 ** Larger allocations are an array of these structures where the
62 ** size of the array is a power of 2.
63 **
64 ** The size of this object must be a power of two. That fact is
65 ** verified in memsys5Init().
66 */
67 typedef struct Mem5Link Mem5Link;
68 struct Mem5Link {
69  int next; /* Index of next free chunk */
70  int prev; /* Index of previous free chunk */
71 };
72 
73 /*
74 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
75 ** mem5.szAtom is always at least 8 and 32-bit integers are used,
76 ** it is not actually possible to reach this limit.
77 */
78 #define LOGMAX 30
79 
80 /*
81 ** Masks used for mem5.aCtrl[] elements.
82 */
83 #define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */
84 #define CTRL_FREE 0x20 /* True if not checked out */
85 
86 /*
87 ** All of the static variables used by this module are collected
88 ** into a single structure named "mem5". This is to keep the
89 ** static variables organized and to reduce namespace pollution
90 ** when this module is combined with other in the amalgamation.
91 */
92 static SQLITE_WSD struct Mem5Global {
93  /*
94  ** Memory available for allocation
95  */
96  int szAtom; /* Smallest possible allocation in bytes */
97  int nBlock; /* Number of szAtom sized blocks in zPool */
98  u8 *zPool; /* Memory available to be allocated */
99 
100  /*
101  ** Mutex to control access to the memory allocation subsystem.
102  */
103  sqlite3_mutex *mutex;
104 
105  /*
106  ** Performance statistics
107  */
108  u64 nAlloc; /* Total number of calls to malloc */
109  u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
110  u64 totalExcess; /* Total internal fragmentation */
111  u32 currentOut; /* Current checkout, including internal fragmentation */
112  u32 currentCount; /* Current number of distinct checkouts */
113  u32 maxOut; /* Maximum instantaneous currentOut */
114  u32 maxCount; /* Maximum instantaneous currentCount */
115  u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
116 
117  /*
118  ** Lists of free blocks. aiFreelist[0] is a list of free blocks of
119  ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2.
120  ** and so forth.
121  */
122  int aiFreelist[LOGMAX+1];
123 
124  /*
125  ** Space for tracking which blocks are checked out and the size
126  ** of each block. One byte per block.
127  */
128  u8 *aCtrl;
129 
130 } mem5;
131 
132 /*
133 ** Access the static variable through a macro for SQLITE_OMIT_WSD.
134 */
135 #define mem5 GLOBAL(struct Mem5Global, mem5)
136 
137 /*
138 ** Assuming mem5.zPool is divided up into an array of Mem5Link
139 ** structures, return a pointer to the idx-th such link.
140 */
141 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
142 
143 /*
144 ** Unlink the chunk at mem5.aPool[i] from list it is currently
145 ** on. It should be found on mem5.aiFreelist[iLogsize].
146 */
147 static void memsys5Unlink(int i, int iLogsize){
148  int next, prev;
149  assert( i>=0 && i<mem5.nBlock );
150  assert( iLogsize>=0 && iLogsize<=LOGMAX );
151  assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
152 
153  next = MEM5LINK(i)->next;
154  prev = MEM5LINK(i)->prev;
155  if( prev<0 ){
156  mem5.aiFreelist[iLogsize] = next;
157  }else{
158  MEM5LINK(prev)->next = next;
159  }
160  if( next>=0 ){
161  MEM5LINK(next)->prev = prev;
162  }
163 }
164 
165 /*
166 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
167 ** free list.
168 */
169 static void memsys5Link(int i, int iLogsize){
170  int x;
171  assert( sqlite3_mutex_held(mem5.mutex) );
172  assert( i>=0 && i<mem5.nBlock );
173  assert( iLogsize>=0 && iLogsize<=LOGMAX );
174  assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
175 
176  x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
177  MEM5LINK(i)->prev = -1;
178  if( x>=0 ){
179  assert( x<mem5.nBlock );
180  MEM5LINK(x)->prev = i;
181  }
182  mem5.aiFreelist[iLogsize] = i;
183 }
184 
185 /*
186 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
187 ** will already be held (obtained by code in malloc.c) if
188 ** sqlite3GlobalConfig.bMemStat is true.
189 */
190 static void memsys5Enter(void){
191  sqlite3_mutex_enter(mem5.mutex);
192 }
193 static void memsys5Leave(void){
194  sqlite3_mutex_leave(mem5.mutex);
195 }
196 
197 /*
198 ** Return the size of an outstanding allocation, in bytes. The
199 ** size returned omits the 8-byte header overhead. This only
200 ** works for chunks that are currently checked out.
201 */
202 static int memsys5Size(void *p){
203  int iSize = 0;
204  if( p ){
205  int i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom);
206  assert( i>=0 && i<mem5.nBlock );
207  iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
208  }
209  return iSize;
210 }
211 
212 /*
213 ** Return a block of memory of at least nBytes in size.
214 ** Return NULL if unable. Return NULL if nBytes==0.
215 **
216 ** The caller guarantees that nByte is positive.
217 **
218 ** The caller has obtained a mutex prior to invoking this
219 ** routine so there is never any chance that two or more
220 ** threads can be in this routine at the same time.
221 */
222 static void *memsys5MallocUnsafe(int nByte){
223  int i; /* Index of a mem5.aPool[] slot */
224  int iBin; /* Index into mem5.aiFreelist[] */
225  int iFullSz; /* Size of allocation rounded up to power of 2 */
226  int iLogsize; /* Log2 of iFullSz/POW2_MIN */
227 
228  /* nByte must be a positive */
229  assert( nByte>0 );
230 
231  /* Keep track of the maximum allocation request. Even unfulfilled
232  ** requests are counted */
233  if( (u32)nByte>mem5.maxRequest ){
234  mem5.maxRequest = nByte;
235  }
236 
237  /* Abort if the requested allocation size is larger than the largest
238  ** power of two that we can represent using 32-bit signed integers.
239  */
240  if( nByte > 0x40000000 ){
241  return 0;
242  }
243 
244  /* Round nByte up to the next valid power of two */
245  for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
246 
247  /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
248  ** block. If not, then split a block of the next larger power of
249  ** two in order to create a new free block of size iLogsize.
250  */
251  for(iBin=iLogsize; iBin<=LOGMAX && mem5.aiFreelist[iBin]<0; iBin++){}
252  if( iBin>LOGMAX ){
253  testcase( sqlite3GlobalConfig.xLog!=0 );
254  sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
255  return 0;
256  }
257  i = mem5.aiFreelist[iBin];
258  memsys5Unlink(i, iBin);
259  while( iBin>iLogsize ){
260  int newSize;
261 
262  iBin--;
263  newSize = 1 << iBin;
264  mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
265  memsys5Link(i+newSize, iBin);
266  }
267  mem5.aCtrl[i] = iLogsize;
268 
269  /* Update allocator performance statistics. */
270  mem5.nAlloc++;
271  mem5.totalAlloc += iFullSz;
272  mem5.totalExcess += iFullSz - nByte;
273  mem5.currentCount++;
274  mem5.currentOut += iFullSz;
275  if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
276  if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
277 
278 #ifdef SQLITE_DEBUG
279  /* Make sure the allocated memory does not assume that it is set to zero
280  ** or retains a value from a previous allocation */
281  memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz);
282 #endif
283 
284  /* Return a pointer to the allocated memory. */
285  return (void*)&mem5.zPool[i*mem5.szAtom];
286 }
287 
288 /*
289 ** Free an outstanding memory allocation.
290 */
291 static void memsys5FreeUnsafe(void *pOld){
292  u32 size, iLogsize;
293  int iBlock;
294 
295  /* Set iBlock to the index of the block pointed to by pOld in
296  ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
297  */
298  iBlock = (int)(((u8 *)pOld-mem5.zPool)/mem5.szAtom);
299 
300  /* Check that the pointer pOld points to a valid, non-free block. */
301  assert( iBlock>=0 && iBlock<mem5.nBlock );
302  assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
303  assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
304 
305  iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
306  size = 1<<iLogsize;
307  assert( iBlock+size-1<(u32)mem5.nBlock );
308 
309  mem5.aCtrl[iBlock] |= CTRL_FREE;
310  mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
311  assert( mem5.currentCount>0 );
312  assert( mem5.currentOut>=(size*mem5.szAtom) );
313  mem5.currentCount--;
314  mem5.currentOut -= size*mem5.szAtom;
315  assert( mem5.currentOut>0 || mem5.currentCount==0 );
316  assert( mem5.currentCount>0 || mem5.currentOut==0 );
317 
318  mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
319  while( ALWAYS(iLogsize<LOGMAX) ){
320  int iBuddy;
321  if( (iBlock>>iLogsize) & 1 ){
322  iBuddy = iBlock - size;
323  }else{
324  iBuddy = iBlock + size;
325  }
326  assert( iBuddy>=0 );
327  if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
328  if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
329  memsys5Unlink(iBuddy, iLogsize);
330  iLogsize++;
331  if( iBuddy<iBlock ){
332  mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
333  mem5.aCtrl[iBlock] = 0;
334  iBlock = iBuddy;
335  }else{
336  mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
337  mem5.aCtrl[iBuddy] = 0;
338  }
339  size *= 2;
340  }
341 
342 #ifdef SQLITE_DEBUG
343  /* Overwrite freed memory with the 0x55 bit pattern to verify that it is
344  ** not used after being freed */
345  memset(&mem5.zPool[iBlock*mem5.szAtom], 0x55, size);
346 #endif
347 
348  memsys5Link(iBlock, iLogsize);
349 }
350 
351 /*
352 ** Allocate nBytes of memory.
353 */
354 static void *memsys5Malloc(int nBytes){
355  sqlite3_int64 *p = 0;
356  if( nBytes>0 ){
357  memsys5Enter();
358  p = memsys5MallocUnsafe(nBytes);
359  memsys5Leave();
360  }
361  return (void*)p;
362 }
363 
364 /*
365 ** Free memory.
366 **
367 ** The outer layer memory allocator prevents this routine from
368 ** being called with pPrior==0.
369 */
370 static void memsys5Free(void *pPrior){
371  assert( pPrior!=0 );
372  memsys5Enter();
373  memsys5FreeUnsafe(pPrior);
374  memsys5Leave();
375 }
376 
377 /*
378 ** Change the size of an existing memory allocation.
379 **
380 ** The outer layer memory allocator prevents this routine from
381 ** being called with pPrior==0.
382 **
383 ** nBytes is always a value obtained from a prior call to
384 ** memsys5Round(). Hence nBytes is always a non-negative power
385 ** of two. If nBytes==0 that means that an oversize allocation
386 ** (an allocation larger than 0x40000000) was requested and this
387 ** routine should return 0 without freeing pPrior.
388 */
389 static void *memsys5Realloc(void *pPrior, int nBytes){
390  int nOld;
391  void *p;
392  assert( pPrior!=0 );
393  assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */
394  assert( nBytes>=0 );
395  if( nBytes==0 ){
396  return 0;
397  }
398  nOld = memsys5Size(pPrior);
399  if( nBytes<=nOld ){
400  return pPrior;
401  }
402  memsys5Enter();
403  p = memsys5MallocUnsafe(nBytes);
404  if( p ){
405  memcpy(p, pPrior, nOld);
406  memsys5FreeUnsafe(pPrior);
407  }
408  memsys5Leave();
409  return p;
410 }
411 
412 /*
413 ** Round up a request size to the next valid allocation size. If
414 ** the allocation is too large to be handled by this allocation system,
415 ** return 0.
416 **
417 ** All allocations must be a power of two and must be expressed by a
418 ** 32-bit signed integer. Hence the largest allocation is 0x40000000
419 ** or 1073741824 bytes.
420 */
421 static int memsys5Roundup(int n){
422  int iFullSz;
423  if( n > 0x40000000 ) return 0;
424  for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2);
425  return iFullSz;
426 }
427 
428 /*
429 ** Return the ceiling of the logarithm base 2 of iValue.
430 **
431 ** Examples: memsys5Log(1) -> 0
432 ** memsys5Log(2) -> 1
433 ** memsys5Log(4) -> 2
434 ** memsys5Log(5) -> 3
435 ** memsys5Log(8) -> 3
436 ** memsys5Log(9) -> 4
437 */
438 static int memsys5Log(int iValue){
439  int iLog;
440  for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++);
441  return iLog;
442 }
443 
444 /*
445 ** Initialize the memory allocator.
446 **
447 ** This routine is not threadsafe. The caller must be holding a mutex
448 ** to prevent multiple threads from entering at the same time.
449 */
450 static int memsys5Init(void *NotUsed){
451  int ii; /* Loop counter */
452  int nByte; /* Number of bytes of memory available to this allocator */
453  u8 *zByte; /* Memory usable by this allocator */
454  int nMinLog; /* Log base 2 of minimum allocation size in bytes */
455  int iOffset; /* An offset into mem5.aCtrl[] */
456 
457  UNUSED_PARAMETER(NotUsed);
458 
459  /* For the purposes of this routine, disable the mutex */
460  mem5.mutex = 0;
461 
462  /* The size of a Mem5Link object must be a power of two. Verify that
463  ** this is case.
464  */
465  assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
466 
467  nByte = sqlite3GlobalConfig.nHeap;
468  zByte = (u8*)sqlite3GlobalConfig.pHeap;
469  assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */
470 
471  /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
472  nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
473  mem5.szAtom = (1<<nMinLog);
474  while( (int)sizeof(Mem5Link)>mem5.szAtom ){
475  mem5.szAtom = mem5.szAtom << 1;
476  }
477 
478  mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
479  mem5.zPool = zByte;
480  mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
481 
482  for(ii=0; ii<=LOGMAX; ii++){
483  mem5.aiFreelist[ii] = -1;
484  }
485 
486  iOffset = 0;
487  for(ii=LOGMAX; ii>=0; ii--){
488  int nAlloc = (1<<ii);
489  if( (iOffset+nAlloc)<=mem5.nBlock ){
490  mem5.aCtrl[iOffset] = ii | CTRL_FREE;
491  memsys5Link(iOffset, ii);
492  iOffset += nAlloc;
493  }
494  assert((iOffset+nAlloc)>mem5.nBlock);
495  }
496 
497  /* If a mutex is required for normal operation, allocate one */
498  if( sqlite3GlobalConfig.bMemstat==0 ){
499  mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
500  }
501 
502  return SQLITE_OK;
503 }
504 
505 /*
506 ** Deinitialize this module.
507 */
508 static void memsys5Shutdown(void *NotUsed){
509  UNUSED_PARAMETER(NotUsed);
510  mem5.mutex = 0;
511  return;
512 }
513 
514 #ifdef SQLITE_TEST
515 /*
516 ** Open the file indicated and write a log of all unfreed memory
517 ** allocations into that log.
518 */
519 void sqlite3Memsys5Dump(const char *zFilename){
520  FILE *out;
521  int i, j, n;
522  int nMinLog;
523 
524  if( zFilename==0 || zFilename[0]==0 ){
525  out = stdout;
526  }else{
527  out = fopen(zFilename, "w");
528  if( out==0 ){
529  fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
530  zFilename);
531  return;
532  }
533  }
534  memsys5Enter();
535  nMinLog = memsys5Log(mem5.szAtom);
536  for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
537  for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
538  fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
539  }
540  fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc);
541  fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc);
542  fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess);
543  fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut);
544  fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
545  fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut);
546  fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount);
547  fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest);
548  memsys5Leave();
549  if( out==stdout ){
550  fflush(stdout);
551  }else{
552  fclose(out);
553  }
554 }
555 #endif
556 
557 /*
558 ** This routine is the only routine in this file with external
559 ** linkage. It returns a pointer to a static sqlite3_mem_methods
560 ** struct populated with the memsys5 methods.
561 */
563  static const sqlite3_mem_methods memsys5Methods = {
564  memsys5Malloc,
565  memsys5Free,
567  memsys5Size,
569  memsys5Init,
570  memsys5Shutdown,
571  0
572  };
573  return &memsys5Methods;
574 }
575 
576 #endif /* SQLITE_ENABLE_MEMSYS5 */
void * memset(void *b, int c, size_t len)
Definition: memset.c:3
struct Mem5Link Mem5Link
Definition: mem5.c:67
#define CTRL_FREE
Definition: mem5.c:84
#define assert(e)
Definition: assert.h:9
#define ALWAYS(X)
Definition: sqliteInt.h:28
uint8_t u8
Definition: sqliteInt.h:15
#define SQLITE_WSD
Definition: sqliteInt.h:25
void ** sqlite3_mem_methods
Definition: sqliteInt.h:57
void * memsys5Realloc(void *pPrior, int nBytes)
#define stdout
Definition: stdio.h:5
#define CTRL_LOGSIZE
Definition: mem5.c:83
const sqlite3_mem_methods * sqlite3MemGetMemsys5(void)
Definition: mem5.c:562
void * memsys5MallocUnsafe(int nByte)
#define mem5
Definition: mem5.c:135
#define LOGMAX
Definition: mem5.c:78
void memsys5FreeUnsafe(void *pOld)
#define SQLITE_OK
Definition: sqliteInt.h:30
uint64_t u64
Definition: sqliteInt.h:14
#define sqlite3_mutex_enter(x)
Definition: sqliteInt.h:45
#define sqlite3_mutex_leave(x)
Definition: sqliteInt.h:46
int memsys5Init(void *NotUsed)
void FILE
Definition: stdio.h:8
#define sqlite3_log(...)
Definition: sqliteInt.h:27
#define UNUSED_PARAMETER(x)
Definition: sqliteInt.h:29
int64_t sqlite3_int64
Definition: sqliteInt.h:17
#define sqlite3GlobalConfig
Definition: sqliteInt.h:7
uint32_t u32
Definition: sqliteInt.h:16
void sqlite3_mutex
Definition: sqliteInt.h:44
int memsys5Roundup(int n)
#define sqlite3MutexAlloc(x)
Definition: sqliteInt.h:47
#define MEM5LINK(idx)
Definition: mem5.c:141
#define testcase(x)
Definition: sqliteInt.h:38
void * memcpy(void *dst, const void *src, size_t n)
Definition: memcpy.c:3