Numworks Epsilon  1.4.1
Graphing Calculator Operating System
erf_inv.cpp
Go to the documentation of this file.
1 #include "erf_inv.h"
2 #include "law.h"
3 #include <cmath>
4 #include <float.h>
5 
6 /*
7  * Licensed to the Apache Software Foundation (ASF) under one or more
8  * contributor license agreements. See the NOTICE file distributed with
9  * this work for additional information regarding copyright ownership.
10  * The ASF licenses this file to You under the Apache License, Version 2.0
11  * (the "License"); you may not use this file except in compliance with
12  * the License. You may obtain a copy of the License at
13  *
14  * http://www.apache.org/licenses/LICENSE-2.0
15  *
16  * Unless required by applicable law or agreed to in writing, software
17  * distributed under the License is distributed on an "AS IS" BASIS,
18  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19  * See the License for the specific language governing permissions and
20  * limitations under the License.
21  */
22 
23 /* This implementation is described in the paper:
24  * Approximating the erfinv function, Mike Giles,
25  * Oxford-Man Institute of Quantitative Finance,
26  * which was published in GPU Computing Gems, volume 2, 2010.
27  */
28 
29 /* The original Appache implementation has been modified to use the libc
30  * library. */
31 double erfInv(double x) {
32  // beware that the logarithm argument must be
33  // commputed as (1.0 - x) * (1.0 + x),
34  // it must NOT be simplified as 1.0 - x * x as this
35  // would induce rounding errors near the boundaries +/-1
36  double w = - std::log((1.0 - x) * (1.0 + x));
37  double p;
38 
39  if (w < 6.25) {
40  w = w - 3.125;
41  p = -3.6444120640178196996e-21;
42  p = -1.685059138182016589e-19 + p * w;
43  p = 1.2858480715256400167e-18 + p * w;
44  p = 1.115787767802518096e-17 + p * w;
45  p = -1.333171662854620906e-16 + p * w;
46  p = 2.0972767875968561637e-17 + p * w;
47  p = 6.6376381343583238325e-15 + p * w;
48  p = -4.0545662729752068639e-14 + p * w;
49  p = -8.1519341976054721522e-14 + p * w;
50  p = 2.6335093153082322977e-12 + p * w;
51  p = -1.2975133253453532498e-11 + p * w;
52  p = -5.4154120542946279317e-11 + p * w;
53  p = 1.051212273321532285e-09 + p * w;
54  p = -4.1126339803469836976e-09 + p * w;
55  p = -2.9070369957882005086e-08 + p * w;
56  p = 4.2347877827932403518e-07 + p * w;
57  p = -1.3654692000834678645e-06 + p * w;
58  p = -1.3882523362786468719e-05 + p * w;
59  p = 0.0001867342080340571352 + p * w;
60  p = -0.00074070253416626697512 + p * w;
61  p = -0.0060336708714301490533 + p * w;
62  p = 0.24015818242558961693 + p * w;
63  p = 1.6536545626831027356 + p * w;
64  } else if (w < 16.0) {
65  w = std::sqrt(w) - 3.25;
66  p = 2.2137376921775787049e-09;
67  p = 9.0756561938885390979e-08 + p * w;
68  p = -2.7517406297064545428e-07 + p * w;
69  p = 1.8239629214389227755e-08 + p * w;
70  p = 1.5027403968909827627e-06 + p * w;
71  p = -4.013867526981545969e-06 + p * w;
72  p = 2.9234449089955446044e-06 + p * w;
73  p = 1.2475304481671778723e-05 + p * w;
74  p = -4.7318229009055733981e-05 + p * w;
75  p = 6.8284851459573175448e-05 + p * w;
76  p = 2.4031110387097893999e-05 + p * w;
77  p = -0.0003550375203628474796 + p * w;
78  p = 0.00095328937973738049703 + p * w;
79  p = -0.0016882755560235047313 + p * w;
80  p = 0.0024914420961078508066 + p * w;
81  p = -0.0037512085075692412107 + p * w;
82  p = 0.005370914553590063617 + p * w;
83  p = 1.0052589676941592334 + p * w;
84  p = 3.0838856104922207635 + p * w;
85  } else if (!std::isinf(w)) {
86  w = std::sqrt(w) - 5.0;
87  p = -2.7109920616438573243e-11;
88  p = -2.5556418169965252055e-10 + p * w;
89  p = 1.5076572693500548083e-09 + p * w;
90  p = -3.7894654401267369937e-09 + p * w;
91  p = 7.6157012080783393804e-09 + p * w;
92  p = -1.4960026627149240478e-08 + p * w;
93  p = 2.9147953450901080826e-08 + p * w;
94  p = -6.7711997758452339498e-08 + p * w;
95  p = 2.2900482228026654717e-07 + p * w;
96  p = -9.9298272942317002539e-07 + p * w;
97  p = 4.5260625972231537039e-06 + p * w;
98  p = -1.9681778105531670567e-05 + p * w;
99  p = 7.5995277030017761139e-05 + p * w;
100  p = -0.00021503011930044477347 + p * w;
101  p = -0.00013871931833623122026 + p * w;
102  p = 1.0103004648645343977 + p * w;
103  p = 4.8499064014085844221 + p * w;
104  } else {
105  // this branch does not appears in the original code, it
106  // was added because the previous branch does not handle
107  // x = +/-1 correctly. In this case, w is positive infinity
108  // and as the first coefficient (-2.71e-11) is negative.
109  // Once the first multiplication is done, p becomes negative
110  // infinity and remains so throughout the polynomial evaluation.
111  // So the branch above incorrectly returns negative infinity
112  // instead of the correct positive infinity.
113  p = INFINITY;
114  }
115  return p * x;
116 }
#define isinf(x)
Definition: math.h:44
double erfInv(double x)
Definition: erf_inv.cpp:31
#define log(x)
Definition: math.h:184
#define INFINITY
Definition: math.h:29
#define sqrt(x)
Definition: math.h:196