Numworks Epsilon  1.4.1
Graphing Calculator Operating System
e_log.c
Go to the documentation of this file.
1 /* @(#)e_log.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* log(x)
14  * Return the logrithm of x
15  *
16  * Method :
17  * 1. Argument Reduction: find k and f such that
18  * x = 2^k * (1+f),
19  * where sqrt(2)/2 < 1+f < sqrt(2) .
20  *
21  * 2. Approximation of log(1+f).
22  * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
23  * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
24  * = 2s + s*R
25  * We use a special Remes algorithm on [0,0.1716] to generate
26  * a polynomial of degree 14 to approximate R The maximum error
27  * of this polynomial approximation is bounded by 2**-58.45. In
28  * other words,
29  * 2 4 6 8 10 12 14
30  * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
31  * (the values of Lg1 to Lg7 are listed in the program)
32  * and
33  * | 2 14 | -58.45
34  * | Lg1*s +...+Lg7*s - R(z) | <= 2
35  * | |
36  * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
37  * In order to guarantee error in log below 1ulp, we compute log
38  * by
39  * log(1+f) = f - s*(f - R) (if f is not too large)
40  * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
41  *
42  * 3. Finally, log(x) = k*ln2 + log(1+f).
43  * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
44  * Here ln2 is split into two floating point number:
45  * ln2_hi + ln2_lo,
46  * where n*ln2_hi is always exact for |n| < 2000.
47  *
48  * Special cases:
49  * log(x) is NaN with signal if x < 0 (including -INF) ;
50  * log(+INF) is +INF; log(0) is -INF with signal;
51  * log(NaN) is that NaN with no signal.
52  *
53  * Accuracy:
54  * according to an error analysis, the error is always less than
55  * 1 ulp (unit in the last place).
56  *
57  * Constants:
58  * The hexadecimal values are the intended ones for the following
59  * constants. The decimal values may be used, provided that the
60  * compiler will convert from decimal to binary accurately enough
61  * to produce the hexadecimal values shown.
62  */
63 
64 #include "math.h"
65 #include "math_private.h"
66 
67 static const double
68 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
69 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
70 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
71 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
72 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
73 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
74 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
75 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
76 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
77 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
78 
79 static const double zero = 0.0;
80 
81 double
82 log(double x)
83 {
84  double hfsq,f,s,z,R,w,t1,t2,dk;
85  int32_t k,hx,i,j;
86  u_int32_t lx;
87 
88  EXTRACT_WORDS(hx,lx,x);
89 
90  k=0;
91  if (hx < 0x00100000) { /* x < 2**-1022 */
92  if (((hx&0x7fffffff)|lx)==0)
93  return -two54/zero; /* log(+-0)=-inf */
94  if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
95  k -= 54; x *= two54; /* subnormal number, scale up x */
96  GET_HIGH_WORD(hx,x);
97  }
98  if (hx >= 0x7ff00000) return x+x;
99  k += (hx>>20)-1023;
100  hx &= 0x000fffff;
101  i = (hx+0x95f64)&0x100000;
102  SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
103  k += (i>>20);
104  f = x-1.0;
105  if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
106  if(f==zero) if(k==0) return zero; else {dk=(double)k;
107  return dk*ln2_hi+dk*ln2_lo;}
108  R = f*f*(0.5-0.33333333333333333*f);
109  if(k==0) return f-R; else {dk=(double)k;
110  return dk*ln2_hi-((R-dk*ln2_lo)-f);}
111  }
112  s = f/(2.0+f);
113  dk = (double)k;
114  z = s*s;
115  i = hx-0x6147a;
116  w = z*z;
117  j = 0x6b851-hx;
118  t1= w*(Lg2+w*(Lg4+w*Lg6));
119  t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
120  i |= j;
121  R = t2+t1;
122  if(i>0) {
123  hfsq=0.5*f*f;
124  if(k==0) return f-(hfsq-s*(hfsq+R)); else
125  return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
126  } else {
127  if(k==0) return f-s*(f-R); else
128  return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
129  }
130 }
#define GET_HIGH_WORD(i, d)
Definition: math_private.h:269
uint32_t u_int32_t
Definition: types.h:10
#define SET_HIGH_WORD(d, v)
Definition: math_private.h:297
#define EXTRACT_WORDS(ix0, ix1, d)
Definition: math_private.h:259
double log(double x)
Definition: e_log.c:82
signed int int32_t
Definition: stdint.h:11