Numworks Epsilon  1.4.1
Graphing Calculator Operating System
e_log10.c
Go to the documentation of this file.
1 /* @(#)e_log10.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* log10(x)
14  * Return the base 10 logarithm of x
15  *
16  * Method :
17  * Let log10_2hi = leading 40 bits of log10(2) and
18  * log10_2lo = log10(2) - log10_2hi,
19  * ivln10 = 1/log(10) rounded.
20  * Then
21  * n = ilogb(x),
22  * if(n<0) n = n+1;
23  * x = scalbn(x,-n);
24  * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
25  *
26  * Note 1:
27  * To guarantee log10(10**n)=n, where 10**n is normal, the rounding
28  * mode must set to Round-to-Nearest.
29  * Note 2:
30  * [1/log(10)] rounded to 53 bits has error .198 ulps;
31  * log10 is monotonic at all binary break points.
32  *
33  * Special cases:
34  * log10(x) is NaN with signal if x < 0;
35  * log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
36  * log10(NaN) is that NaN with no signal;
37  * log10(10**N) = N for N=0,1,...,22.
38  *
39  * Constants:
40  * The hexadecimal values are the intended ones for the following constants.
41  * The decimal values may be used, provided that the compiler will convert
42  * from decimal to binary accurately enough to produce the hexadecimal values
43  * shown.
44  */
45 
46 #include "math.h"
47 #include "math_private.h"
48 
49 static const double
50 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
51 ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
52 log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
53 log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
54 
55 static const double zero = 0.0;
56 
57 double
58 log10(double x)
59 {
60  double y,z;
61  int32_t i,k,hx;
62  u_int32_t lx;
63 
64  EXTRACT_WORDS(hx,lx,x);
65 
66  k=0;
67  if (hx < 0x00100000) { /* x < 2**-1022 */
68  if (((hx&0x7fffffff)|lx)==0)
69  return -two54/zero; /* log(+-0)=-inf */
70  if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
71  k -= 54; x *= two54; /* subnormal number, scale up x */
72  GET_HIGH_WORD(hx,x);
73  }
74  if (hx >= 0x7ff00000) return x+x;
75  k += (hx>>20)-1023;
76  i = ((u_int32_t)k&0x80000000)>>31;
77  hx = (hx&0x000fffff)|((0x3ff-i)<<20);
78  y = (double)(k+i);
79  SET_HIGH_WORD(x,hx);
80  z = y*log10_2lo + ivln10*log(x);
81  return z+y*log10_2hi;
82 }
#define GET_HIGH_WORD(i, d)
Definition: math_private.h:269
uint32_t u_int32_t
Definition: types.h:10
#define SET_HIGH_WORD(d, v)
Definition: math_private.h:297
#define log(x)
Definition: math.h:184
#define EXTRACT_WORDS(ix0, ix1, d)
Definition: math_private.h:259
double log10(double x)
Definition: e_log10.c:58
signed int int32_t
Definition: stdint.h:11