Numworks Epsilon  1.4.1
Graphing Calculator Operating System
modcmath.c
Go to the documentation of this file.
1 /*
2  * This file is part of the MicroPython project, http://micropython.org/
3  *
4  * The MIT License (MIT)
5  *
6  * Copyright (c) 2013, 2014 Damien P. George
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "py/builtin.h"
28 
29 #if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_BUILTINS_COMPLEX && MICROPY_PY_CMATH
30 
31 #include <math.h>
32 
33 // phase(z): returns the phase of the number z in the range (-pi, +pi]
34 STATIC mp_obj_t mp_cmath_phase(mp_obj_t z_obj) {
35  mp_float_t real, imag;
36  mp_obj_get_complex(z_obj, &real, &imag);
37  return mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real));
38 }
39 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_phase_obj, mp_cmath_phase);
40 
41 // polar(z): returns the polar form of z as a tuple
42 STATIC mp_obj_t mp_cmath_polar(mp_obj_t z_obj) {
43  mp_float_t real, imag;
44  mp_obj_get_complex(z_obj, &real, &imag);
45  mp_obj_t tuple[2] = {
46  mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(real*real + imag*imag)),
47  mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real)),
48  };
49  return mp_obj_new_tuple(2, tuple);
50 }
51 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_polar_obj, mp_cmath_polar);
52 
53 // rect(r, phi): returns the complex number with modulus r and phase phi
54 STATIC mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) {
55  mp_float_t r = mp_obj_get_float(r_obj);
56  mp_float_t phi = mp_obj_get_float(phi_obj);
57  return mp_obj_new_complex(r * MICROPY_FLOAT_C_FUN(cos)(phi), r * MICROPY_FLOAT_C_FUN(sin)(phi));
58 }
59 STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_cmath_rect_obj, mp_cmath_rect);
60 
61 // exp(z): return the exponential of z
62 STATIC mp_obj_t mp_cmath_exp(mp_obj_t z_obj) {
63  mp_float_t real, imag;
64  mp_obj_get_complex(z_obj, &real, &imag);
65  mp_float_t exp_real = MICROPY_FLOAT_C_FUN(exp)(real);
66  return mp_obj_new_complex(exp_real * MICROPY_FLOAT_C_FUN(cos)(imag), exp_real * MICROPY_FLOAT_C_FUN(sin)(imag));
67 }
68 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_exp_obj, mp_cmath_exp);
69 
70 // log(z): return the natural logarithm of z, with branch cut along the negative real axis
71 // TODO can take second argument, being the base
72 STATIC mp_obj_t mp_cmath_log(mp_obj_t z_obj) {
73  mp_float_t real, imag;
74  mp_obj_get_complex(z_obj, &real, &imag);
75  return mp_obj_new_complex(0.5 * MICROPY_FLOAT_C_FUN(log)(real*real + imag*imag), MICROPY_FLOAT_C_FUN(atan2)(imag, real));
76 }
77 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log_obj, mp_cmath_log);
78 
79 #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
80 // log10(z): return the base-10 logarithm of z, with branch cut along the negative real axis
81 STATIC mp_obj_t mp_cmath_log10(mp_obj_t z_obj) {
82  mp_float_t real, imag;
83  mp_obj_get_complex(z_obj, &real, &imag);
84  return mp_obj_new_complex(0.5 * MICROPY_FLOAT_C_FUN(log10)(real*real + imag*imag), 0.4342944819032518 * MICROPY_FLOAT_C_FUN(atan2)(imag, real));
85 }
86 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log10_obj, mp_cmath_log10);
87 #endif
88 
89 // sqrt(z): return the square-root of z
90 STATIC mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) {
91  mp_float_t real, imag;
92  mp_obj_get_complex(z_obj, &real, &imag);
93  mp_float_t sqrt_abs = MICROPY_FLOAT_C_FUN(pow)(real*real + imag*imag, 0.25);
94  mp_float_t theta = 0.5 * MICROPY_FLOAT_C_FUN(atan2)(imag, real);
95  return mp_obj_new_complex(sqrt_abs * MICROPY_FLOAT_C_FUN(cos)(theta), sqrt_abs * MICROPY_FLOAT_C_FUN(sin)(theta));
96 }
97 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sqrt_obj, mp_cmath_sqrt);
98 
99 // cos(z): return the cosine of z
100 STATIC mp_obj_t mp_cmath_cos(mp_obj_t z_obj) {
101  mp_float_t real, imag;
102  mp_obj_get_complex(z_obj, &real, &imag);
103  return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), -MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag));
104 }
105 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_cos_obj, mp_cmath_cos);
106 
107 // sin(z): return the sine of z
108 STATIC mp_obj_t mp_cmath_sin(mp_obj_t z_obj) {
109  mp_float_t real, imag;
110  mp_obj_get_complex(z_obj, &real, &imag);
111  return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag));
112 }
113 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sin_obj, mp_cmath_sin);
114 
115 STATIC const mp_rom_map_elem_t mp_module_cmath_globals_table[] = {
116  { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_cmath) },
117  { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e },
118  { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi },
119  { MP_ROM_QSTR(MP_QSTR_phase), MP_ROM_PTR(&mp_cmath_phase_obj) },
120  { MP_ROM_QSTR(MP_QSTR_polar), MP_ROM_PTR(&mp_cmath_polar_obj) },
121  { MP_ROM_QSTR(MP_QSTR_rect), MP_ROM_PTR(&mp_cmath_rect_obj) },
122  { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_cmath_exp_obj) },
123  { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_cmath_log_obj) },
124  #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
125  { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_cmath_log10_obj) },
126  #endif
127  { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_cmath_sqrt_obj) },
128  //{ MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_cmath_acos_obj) },
129  //{ MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_cmath_asin_obj) },
130  //{ MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_cmath_atan_obj) },
131  { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_cmath_cos_obj) },
132  { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_cmath_sin_obj) },
133  //{ MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_cmath_tan_obj) },
134  //{ MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_cmath_acosh_obj) },
135  //{ MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_cmath_asinh_obj) },
136  //{ MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_cmath_atanh_obj) },
137  //{ MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_cmath_cosh_obj) },
138  //{ MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_cmath_sinh_obj) },
139  //{ MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_cmath_tanh_obj) },
140  //{ MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_cmath_isfinite_obj) },
141  //{ MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_cmath_isinf_obj) },
142  //{ MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_cmath_isnan_obj) },
143 };
144 
145 STATIC MP_DEFINE_CONST_DICT(mp_module_cmath_globals, mp_module_cmath_globals_table);
146 
148  .base = { &mp_type_module },
149  .globals = (mp_obj_dict_t*)&mp_module_cmath_globals,
150 };
151 
152 #endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_CMATH
#define exp(x)
Definition: math.h:176
mp_obj_t mp_obj_new_tuple(size_t n, const mp_obj_t *items)
Definition: objtuple.c:235
#define MP_DEFINE_CONST_DICT(dict_name, table_name)
Definition: obj.h:317
#define MP_ROM_QSTR(q)
Definition: obj.h:241
#define MP_ROM_PTR(p)
Definition: obj.h:242
mp_obj_base_t base
Definition: obj.h:814
#define STATIC
Definition: mpconfig.h:1178
#define MP_DEFINE_CONST_FUN_OBJ_1(obj_name, fun_name)
Definition: obj.h:285
#define atan2(y, x)
Definition: math.h:168
#define sin(x)
Definition: math.h:194
#define log(x)
Definition: math.h:184
#define pow(x, y)
Definition: math.h:190
#define cos(x)
Definition: math.h:172
#define log10(x)
Definition: math.h:186
#define sinh(x)
Definition: math.h:195
#define MP_DEFINE_CONST_FUN_OBJ_2(obj_name, fun_name)
Definition: obj.h:288
const mp_obj_type_t mp_type_module
Definition: objmodule.c:94
#define cosh(x)
Definition: math.h:173
const mp_obj_module_t mp_module_cmath
uint64_t mp_obj_t
Definition: obj.h:39
#define sqrt(x)
Definition: math.h:196